Chapter 3

Probability

3.1 Defining probability
3.2 Conditional probability
3.3 Sampling from a small population
3.4 Random variables
3.5 Continuous distributions
Probability forms the foundation of statistics, and you’re probably already aware of many of the ideas presented in this chapter. However, formalization of probability concepts is likely new for most readers.

While this chapter provides a theoretical foundation for the ideas in later chapters and provides a path to a deeper understanding, mastery of the concepts introduced in this chapter is not required for applying the methods introduced in the rest of this book.

For videos, slides, and other resources, please visit www.openintro.org/os
3.1 Defining probability

Statistics is based on probability, and while probability is not required for the applied techniques in this book, it may help you gain a deeper understanding of the methods and set a better foundation for future courses.

3.1.1 Introductory examples

Before we get into technical ideas, let’s walk through some basic examples that may feel more familiar.

EXAMPLE 3.1
A “die”, the singular of dice, is a cube with six faces numbered 1, 2, 3, 4, 5, and 6. What is the chance of getting 1 when rolling a die?

If the die is fair, then the chance of a 1 is as good as the chance of any other number. Since there are six outcomes, the chance must be 1-in-6 or, equivalently, 1/6.

EXAMPLE 3.2
What is the chance of getting a 1 or 2 in the next roll?

1 and 2 constitute two of the six equally likely possible outcomes, so the chance of getting one of these two outcomes must be 2/6 = 1/3.

EXAMPLE 3.3
What is the chance of getting either 1, 2, 3, 4, 5, or 6 on the next roll?

100%. The outcome must be one of these numbers.

EXAMPLE 3.4
What is the chance of not rolling a 2?

Since the chance of rolling a 2 is 1/6 or 16.6%, the chance of not rolling a 2 must be 100% – 16.6% = 83.3% or 5/6.

Alternatively, we could have noticed that not rolling a 2 is the same as getting a 1, 3, 4, 5, or 6, which makes up five of the six equally likely outcomes and has probability 5/6.

EXAMPLE 3.5
Consider rolling two dice. If 1/6 of the time the first die is a 1 and 1/6 of those times the second die is a 1, what is the chance of getting two 1s?

If 16.6% of the time the first die is a 1 and 1/6 of those times the second die is also a 1, then the chance that both dice are 1 is (1/6) × (1/6) or 1/36.
3.1.2 Probability

We use probability to build tools to describe and understand apparent randomness. We often frame probability in terms of a random process giving rise to an outcome.

Roll a die → 1, 2, 3, 4, 5, or 6
Flip a coin → H or T

Rolling a die or flipping a coin is a seemingly random process and each gives rise to an outcome.

Probability is defined as a proportion, and it always takes values between 0 and 1 (inclusively). It may also be displayed as a percentage between 0% and 100%.

Probability can be illustrated by rolling a die many times. Let \hat{p}_n be the proportion of outcomes that are 1 after the first n rolls. As the number of rolls increases, \hat{p}_n will converge to the probability of rolling a 1, $p = 1/6$. Figure 3.1 shows this convergence for 100,000 die rolls. The tendency of \hat{p}_n to stabilize around p is described by the Law of Large Numbers.

![Figure 3.1: The fraction of die rolls that are 1 at each stage in a simulation. The proportion tends to get closer to the probability $1/6 \approx 0.167$ as the number of rolls increases.](image)

LAW OF LARGE NUMBERS

As more observations are collected, the proportion \hat{p}_n of occurrences with a particular outcome converges to the probability p of that outcome.

Occasionally the proportion will veer off from the probability and appear to defy the Law of Large Numbers, as \hat{p}_n does many times in Figure 3.1. However, these deviations become smaller as the number of rolls increases.

Above we write p as the probability of rolling a 1. We can also write this probability as

$$P(\text{rolling a 1})$$

As we become more comfortable with this notation, we will abbreviate it further. For instance, if it is clear that the process is “rolling a die”, we could abbreviate $P(\text{rolling a 1})$ as $P(1)$.
3.1. DEFINING PROBABILITY

GUIDED PRACTICE 3.6

Random processes include rolling a die and flipping a coin. (a) Think of another random process. (b) Describe all the possible outcomes of that process. For instance, rolling a die is a random process with possible outcomes 1, 2, ..., 6.¹

What we think of as random processes are not necessarily random, but they may just be too difficult to understand exactly. The fourth example in the footnote solution to Guided Practice 3.6 suggests a roommate’s behavior is a random process. However, even if a roommate’s behavior is not truly random, modeling her behavior as a random process can still be useful.

3.1.3 Disjoint or mutually exclusive outcomes

Two outcomes are called disjoint or mutually exclusive if they cannot both happen. For instance, if we roll a die, the outcomes 1 and 2 are disjoint since they cannot both occur. On the other hand, the outcomes 1 and “rolling an odd number” are not disjoint since both occur if the outcome of the roll is a 1. The terms disjoint and mutually exclusive are equivalent and interchangeable.

Calculating the probability of disjoint outcomes is easy. When rolling a die, the outcomes 1 and 2 are disjoint, and we compute the probability that one of these outcomes will occur by adding their separate probabilities:

\[P(1 \text{ or } 2) = P(1) + P(2) = 1/6 + 1/6 = 1/3 \]

What about the probability of rolling a 1, 2, 3, 4, 5, or 6? Here again, all of the outcomes are disjoint so we add the probabilities:

\[
\begin{align*}
P(1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6) &= P(1) + P(2) + P(3) + P(4) + P(5) + P(6) \\
&= 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1
\end{align*}
\]

The Addition Rule guarantees the accuracy of this approach when the outcomes are disjoint.

ADDITION RULE OF DISJOINT OUTCOMES

If \(A_1 \) and \(A_2 \) represent two disjoint outcomes, then the probability that one of them occurs is given by

\[P(A_1 \text{ or } A_2) = P(A_1) + P(A_2) \]

If there are many disjoint outcomes \(A_1, ..., A_k \), then the probability that one of these outcomes will occur is

\[P(A_1) + P(A_2) + \cdots + P(A_k) \]

¹Here are four examples. (i) Whether someone gets sick in the next month or not is an apparently random process with outcomes sick and not. (ii) We can generate a random process by randomly picking a person and measuring that person’s height. The outcome of this process will be a positive number. (iii) Whether the stock market goes up or down next week is a seemingly random process with possible outcomes up, down, and no_change. Alternatively, we could have used the percent change in the stock market as a numerical outcome. (iv) Whether your roommate cleans her dishes tonight probably seems like a random process with possible outcomes cleans_dishes and leaves_dishes.
GUIDED PRACTICE 3.7
We are interested in the probability of rolling a 1, 4, or 5. (a) Explain why the outcomes 1, 4, and 5 are disjoint. (b) Apply the Addition Rule for disjoint outcomes to determine \(P(1 \text{ or } 4 \text{ or } 5) \).²

GUIDED PRACTICE 3.8
In the loans data set in Chapter 2, the homeownership variable described whether the borrower rents, has a mortgage, or owns her property. Of the 10,000 borrowers, 3858 rented, 4789 had a mortgage, and 1353 owned their home.³

(a) Are the outcomes rent, mortgage, and own disjoint?
(b) Determine the proportion of loans with value mortgage and own separately.
(c) Use the Addition Rule for disjoint outcomes to compute the probability a randomly selected loan from the data set is for someone who has a mortgage or owns her home.

Data scientists rarely work with individual outcomes and instead consider sets or collections of outcomes. Let \(A \) represent the event where a die roll results in 1 or 2 and \(B \) represent the event that the die roll is a 4 or a 6. We write \(A \) as the set of outcomes \{1, 2\} and \(B = \{4, 6\} \). These sets are commonly called events. Because \(A \) and \(B \) have no elements in common, they are disjoint events. \(A \) and \(B \) are represented in Figure 3.2.

![Figure 3.2: Three events, A, B, and D, consist of outcomes from rolling a die. A and B are disjoint since they do not have any outcomes in common.](image)

The Addition Rule applies to both disjoint outcomes and disjoint events. The probability that one of the disjoint events \(A \) or \(B \) occurs is the sum of the separate probabilities:

\[P(A \text{ or } B) = P(A) + P(B) = 1/3 + 1/3 = 2/3 \]

GUIDED PRACTICE 3.9
(a) Verify the probability of event \(A \), \(P(A) \), is 1/3 using the Addition Rule. (b) Do the same for event \(B \).⁴

GUIDED PRACTICE 3.10
(a) Using Figure 3.2 as a reference, what outcomes are represented by event \(D \)? (b) Are events \(B \) and \(D \) disjoint? (c) Are events \(A \) and \(D \) disjoint?⁵

GUIDED PRACTICE 3.11
In Guided Practice 3.10, you confirmed \(B \) and \(D \) from Figure 3.2 are disjoint. Compute the probability that event \(B \) or event \(D \) occurs.⁶

²(a) The random process is a die roll, and at most one of these outcomes can come up. This means they are disjoint outcomes. (b) \(P(1 \text{ or } 4 \text{ or } 5) = P(1) + P(4) + P(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} \).
³(a) Yes. Each loan is categorized in only one level of homeownership. (b) Mortgage: \(\frac{4789}{10000} = 0.479 \). Own: \(\frac{1353}{10000} = 0.135 \). (c) \(P(\text{mortgage or own}) = P(\text{mortgage}) + P(\text{own}) = 0.479 + 0.135 = 0.614 \).
⁴(a) \(P(A) = P(1 \text{ or } 2) = P(1) + P(2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} \). (b) Similarly, \(P(B) = 1/3 \).
⁵(a) Outcomes 2 and 3. (b) Yes, events \(B \) and \(D \) are disjoint because they share no outcomes. (c) The events \(A \) and \(D \) share an outcome in common, 2, and so are not disjoint.
⁶Since \(B \) and \(D \) are disjoint events, use the Addition Rule: \(P(B \text{ or } D) = P(B) + P(D) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \).
3.1.4 Probabilities when events are not disjoint

Let's consider calculations for two events that are not disjoint in the context of a regular deck of 52 cards, represented in Figure 3.3. If you are unfamiliar with the cards in a regular deck, please see the footnote.\footnote{The 52 cards are split into four suits: \text{♥} (club), \text{♦} (diamond), \text{♠} (heart), \text{♣} (spade). Each suit has its 13 cards labeled: 2, 3, ..., 10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique combination of a suit and a label, e.g. \text{4♥} and \text{J♣}. The 12 cards represented by the jacks, queens, and kings are called face cards. The cards that are \text{♦} or \text{♣} are typically colored red while the other two suits are typically colored black.}

\begin{table}[h]
\centering
\begin{tabular}{cccccccccccc}
\text{2♥} & \text{3♥} & \text{4♥} & \text{5♥} & \text{6♥} & \text{7♥} & \text{8♥} & \text{9♥} & \text{10♥} & \text{J♥} & \text{Q♥} & \text{K♥} & \text{A♥} \\
\text{2♦} & \text{3♦} & \text{4♦} & \text{5♦} & \text{6♦} & \text{7♦} & \text{8♦} & \text{9♦} & \text{10♦} & \text{J♦} & \text{Q♦} & \text{K♦} & \text{A♦} \\
\text{2♠} & \text{3♠} & \text{4♠} & \text{5♠} & \text{6♠} & \text{7♠} & \text{8♠} & \text{9♠} & \text{10♠} & \text{J♠} & \text{Q♠} & \text{K♠} & \text{A♠} \\
\end{tabular}
\caption{Representations of the 52 unique cards in a deck.}
\end{table}

Figure 3.3: Representations of the 52 unique cards in a deck.

GUIDED PRACTICE 3.12

(a) What is the probability that a randomly selected card is a diamond? (b) What is the probability that a randomly selected card is a face card?\footnote{(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal chance of being drawn, so the probability that a randomly selected card is a diamond is \(P(\text{diamond}) = \frac{13}{52} = \frac{1}{4} = 0.250\). (b) Likewise, there are 12 face cards, so \(P(\text{face card}) = \frac{12}{52} = \frac{3}{13} = 0.231\).}

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for two or three variables, attributes, or random processes. The Venn diagram in Figure 3.4 uses a circle to represent diamonds and another to represent face cards. If a card is both a diamond and a face card, it falls into the intersection of the circles. If it is a diamond but not a face card, it will be in part of the left circle that is not in the right circle (and so on). The total number of cards that are diamonds is given by the total number of cards in the diamonds circle: 10 + 3 = 13. The probabilities are also shown (e.g. \(10/52 = 0.1923\)).

Let \(A\) represent the event that a randomly selected card is a diamond and \(B\) represent the event that it is a face card. How do we compute \(P(A \text{ or } B)\)? Events \(A\) and \(B\) are not disjoint – the cards J♦, Q♦, and K♦ fall into both categories – so we cannot use the Addition Rule for disjoint events. Instead we use the Venn diagram. We start by adding the probabilities of the two events:

\[P(A) + P(B) = P(\text{diamond}) + P(\text{face card}) = 13/52 + 12/52 \]

\[= \frac{25}{52} = 0.481 \]

Figure 3.4: A Venn diagram for diamonds and face cards.
However, the three cards that are in both events were counted twice, once in each probability. We must correct this double counting:

\[
P(A \text{ or } B) = P(\diamondsuit \text{ or face card}) = P(\diamondsuit) + P(\text{face card}) - P(\diamondsuit \text{ and face card}) = \frac{13}{52} + \frac{12}{52} - \frac{3}{52} = \frac{22}{52} = \frac{11}{26}
\]

This equation is an example of the **General Addition Rule**.

GENERAL ADDITION RULE

If \(A\) and \(B\) are any two events, disjoint or not, then the probability that at least one of them will occur is

\[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)
\]

where \(P(A \text{ and } B)\) is the probability that both events occur.

TIP: “or” is inclusive

When we write “or” in statistics, we mean “and/or” unless we explicitly state otherwise. Thus, \(A \text{ or } B\) occurs means \(A\), \(B\), or both \(A\) and \(B\) occur.

GUIDED PRACTICE 3.13

(a) If \(A\) and \(B\) are disjoint, describe why this implies \(P(A \text{ and } B) = 0\). (b) Using part (a), verify that the General Addition Rule simplifies to the simpler Addition Rule for disjoint events if \(A\) and \(B\) are disjoint.\(^9\)

GUIDED PRACTICE 3.14

In the *loans* data set describing 10,000 loans, 1495 loans were from joint applications (e.g. a couple applied together), 4789 applicants had a mortgage, and 950 had both of these characteristics. Create a Venn diagram for this setup.\(^10\)

GUIDED PRACTICE 3.15

(a) Use your Venn diagram from Guided Practice 3.14 to determine the probability a randomly drawn loan from the *loans* data set is from a joint application where the couple had a mortgage. (b) What is the probability that the loan had either of these attributes?\(^11\)

\(^9\) (a) If \(A\) and \(B\) are disjoint, \(A\) and \(B\) can never occur simultaneously. (b) If \(A\) and \(B\) are disjoint, then the last \(P(A \text{ and } B)\) term of in the General Addition Rule formula is 0 (see part (a)) and we are left with the Addition Rule for disjoint events.

\(^10\) Both the counts and corresponding probabilities (e.g. \(3839/10000 = 0.384\)) are shown. Notice that the number of loans represented in the left circle corresponds to \(3839 + 950 = 4789\), and the number represented in the right circle is \(950 + 545 = 1495\).

\(^11\) (a) The solution is represented by the intersection of the two circles: 0.095. (b) This is the sum of the three disjoint probabilities shown in the circles: 0.384 + 0.095 + 0.055 = 0.534 (off by 0.001 due to a rounding error).
3.1.5 Probability distributions

A **probability distribution** is a table of all disjoint outcomes and their associated probabilities. Figure 3.5 shows the probability distribution for the sum of two dice.

<table>
<thead>
<tr>
<th>Dice sum</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>$\frac{3}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{5}{36}$</td>
<td>$\frac{6}{36}$</td>
<td>$\frac{5}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{3}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>$\frac{1}{36}$</td>
</tr>
</tbody>
</table>

Figure 3.5: Probability distribution for the sum of two dice.

RULES FOR PROBABILITY DISTRIBUTIONS

A probability distribution is a list of the possible outcomes with corresponding probabilities that satisfy three rules:

1. The outcomes listed must be disjoint.
2. Each probability must be between 0 and 1.
3. The probabilities must total 1.

GUIDED PRACTICE 3.16

Figure 3.6 suggests three distributions for household income in the United States. Only one is correct. Which one must it be? What is wrong with the other two?\(^{12}\)

<table>
<thead>
<tr>
<th>Income Range</th>
<th>$0-25k$</th>
<th>$25k-50k$</th>
<th>$50k-100k$</th>
<th>$100k+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.18</td>
<td>0.39</td>
<td>0.33</td>
<td>0.16</td>
</tr>
<tr>
<td>(b)</td>
<td>0.38</td>
<td>-0.27</td>
<td>0.52</td>
<td>0.37</td>
</tr>
<tr>
<td>(c)</td>
<td>0.28</td>
<td>0.27</td>
<td>0.29</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Figure 3.6: Proposed distributions of US household incomes (Guided Practice 3.16).

Chapter 1 emphasized the importance of plotting data to provide quick summaries. Probability distributions can also be summarized in a bar plot. For instance, the distribution of US household incomes is shown in Figure 3.7 as a bar plot. The probability distribution for the sum of two dice is shown in Figure 3.5 and plotted in Figure 3.8.

![Bar plot of US household incomes](image)

Figure 3.7: The probability distribution of US household income.

\(^{12}\)The probabilities of (a) do not sum to 1. The second probability in (b) is negative. This leaves (c), which sure enough satisfies the requirements of a distribution. One of the three was said to be the actual distribution of US household incomes, so it must be (c).
Chapter 3. Probability

3.1.6 Complement of an event

Rolling a die produces a value in the set \{1, 2, 3, 4, 5, 6\}. This set of all possible outcomes is called the sample space \(S\) for rolling a die. We often use the sample space to examine the scenario where an event does not occur.

Let \(D = \{2, 3\}\) represent the event that the outcome of a die roll is 2 or 3. Then the complement of \(D\) represents all outcomes in our sample space that are not in \(D\), which is denoted by \(D^c = \{1, 4, 5, 6\}\). That is, \(D^c\) is the set of all possible outcomes not already included in \(D\). Figure 3.9 shows the relationship between \(D\), \(D^c\), and the sample space \(S\).

![Figure 3.9: Event D = {2, 3} and its complement, Dc = {1, 4, 5, 6}. S represents the sample space, which is the set of all possible outcomes.](image)

Guided Practice 3.17

(a) Compute \(P(D^c) = P(\text{rolling a 1, 4, 5, or 6})\). (b) What is \(P(D) + P(D^c)^{13}\)

Guided Practice 3.18

Events \(A = \{1, 2\}\) and \(B = \{4, 6\}\) are shown in Figure 3.2 on page 84. (a) Write out what \(A^c\) and \(B^c\) represent. (b) Compute \(P(A^c)\) and \(P(B^c)\). (c) Compute \(P(A) + P(A^c)\) and \(P(B) + P(B^c)^{14}\).

^{13}(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3. (b) We can also see that \(P(D) = \frac{2}{6} + \frac{3}{6} = 1/3\). Since \(D\) and \(D^c\) are disjoint, \(P(D) + P(D^c) = 1\).

^{14}Brief solutions: (a) \(A^c = \{3, 4, 5, 6\}\) and \(B^c = \{1, 2, 3, 5\}\). (b) Noting that each outcome is disjoint, add the individual outcome probabilities to get \(P(A^c) = 2/3\) and \(P(B^c) = 2/3\). (c) \(A\) and \(A^c\) are disjoint, and the same is true of \(B\) and \(B^c\). Therefore, \(P(A) + P(A^c) = 1\) and \(P(B) + P(B^c) = 1\).
A complement of an event \(A \) is constructed to have two very important properties: (i) every possible outcome not in \(A \) is in \(A^c \), and (ii) \(A \) and \(A^c \) are disjoint. Property (i) implies

\[
P(A \text{ or } A^c) = 1
\]

That is, if the outcome is not in \(A \), it must be represented in \(A^c \). We use the Addition Rule for disjoint events to apply Property (ii):

\[
P(A \text{ or } A^c) = P(A) + P(A^c)
\]

Combining the last two equations yields a very useful relationship between the probability of an event and its complement.

COMPLEMENT
The complement of event \(A \) is denoted \(A^c \), and \(A^c \) represents all outcomes not in \(A \). \(A \) and \(A^c \) are mathematically related:

\[
P(A) + P(A^c) = 1, \quad \text{i.e.} \quad P(A) = 1 - P(A^c)
\]

In simple examples, computing \(A \) or \(A^c \) is feasible in a few steps. However, using the complement can save a lot of time as problems grow in complexity.

GUIDED PRACTICE 3.19
Let \(A \) represent the event where we roll two dice and their total is less than 12. (a) What does the event \(A^c \) represent? (b) Determine \(P(A^c) \) from Figure 3.5 on page 87. (c) Determine \(P(A) \).

GUIDED PRACTICE 3.20
Find the following probabilities for rolling two dice:

(a) The sum of the dice is not 6.

(b) The sum is at least 4. That is, determine the probability of the event \(B = \{4, 5, \ldots, 12\} \).

(c) The sum is no more than 10. That is, determine the probability of the event \(D = \{2, 3, \ldots, 10\} \).

3.1.7 Independence

Just as variables and observations can be independent, random processes can be independent, too. Two processes are *independent* if knowing the outcome of one provides no useful information about the outcome of the other. For instance, flipping a coin and rolling a die are two independent processes – knowing the coin was heads does not help determine the outcome of a die roll. On the other hand, stock prices usually move up or down together, so they are not independent.

Example 3.5 provides a basic example of two independent processes: rolling two dice. We want to determine the probability that both will be 1. Suppose one of the dice is red and the other white. If the outcome of the red die is a 1, it provides no information about the outcome of the white die. We first encountered this same question in Example 3.5 (page 81), where we calculated the probability using the following reasoning: 1/6 of the time the red die is a 1, and 1/6 of those times the white die...
will also be 1. This is illustrated in Figure 3.10. Because the rolls are independent, the probabilities of the corresponding outcomes can be multiplied to get the final answer: \((1/6) \times (1/6) = 1/36\). This can be generalized to many independent processes.

![Diagram showing probability distribution](image)

Figure 3.10: 1/6 of the time, the first roll is a 1. Then 1/6 of those times, the second roll will also be a 1.

EXAMPLE 3.21

What if there was also a blue die independent of the other two? What is the probability of rolling the three dice and getting all 1s?

The same logic applies from Example 3.5. If 1/36 of the time the white and red dice are both 1, then 1/6 of those times the blue die will also be 1, so multiply:

\[
P(white = 1 \text{ and } red = 1 \text{ and } blue = 1) = P(white = 1) \times P(red = 1) \times P(blue = 1) \\
= (1/6) \times (1/6) \times (1/6) = 1/216
\]

Example 3.21 illustrates what is called the Multiplication Rule for independent processes.

MULTIPLICATION RULE FOR INDEPENDENT PROCESSES

If \(A\) and \(B\) represent events from two different and independent processes, then the probability that both \(A\) and \(B\) occur can be calculated as the product of their separate probabilities:

\[
P(A \text{ and } B) = P(A) \times P(B)
\]

Similarly, if there are \(k\) events \(A_1, \ldots, A_k\) from \(k\) independent processes, then the probability they all occur is

\[
P(A_1 \times P(A_2) \times \cdots \times P(A_k))
\]

GUIDED PRACTICE 3.22

About 9% of people are left-handed. Suppose 2 people are selected at random from the U.S. population. Because the sample size of 2 is very small relative to the population, it is reasonable to assume these two people are independent. (a) What is the probability that both are left-handed? (b) What is the probability that both are right-handed?\(^{17}\)

\(^{17}\)(a) The probability the first person is left-handed is 0.09, which is the same for the second person. We apply the Multiplication Rule for independent processes to determine the probability that both will be left-handed: \(0.09 \times 0.09 = 0.0081\).

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right- and left-handed) is nearly 0, which results in \(P(\text{right-handed}) = 1 - 0.09 = 0.91\). Using the same reasoning as in part (a), the probability that both will be right-handed is \(0.91 \times 0.91 = 0.8281\).
3.1. DEFINING PROBABILITY

GUIDED PRACTICE 3.23
Suppose 5 people are selected at random.18
(a) What is the probability that all are right-handed?
(b) What is the probability that all are left-handed?
(c) What is the probability that not all of the people are right-handed?

Suppose the variables handedness and sex are independent, i.e. knowing someone’s sex provides no useful information about their handedness and vice-versa. Then we can compute whether a randomly selected person is right-handed and female19 using the Multiplication Rule:
\[P(\text{right-handed and female}) = P(\text{right-handed}) \times P(\text{female}) \]
\[= 0.91 \times 0.50 = 0.455 \]

GUIDED PRACTICE 3.24
Three people are selected at random.20
(a) What is the probability that the first person is male and right-handed?
(b) What is the probability that the first two people are male and right-handed?
(c) What is the probability that the third person is female and left-handed?
(d) What is the probability that the first two people are male and right-handed and the third person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another outcome. The question we are asking is, are the occurrences of the two events independent? We say that two events \(A \) and \(B \) are independent if they satisfy \(P(A \text{ and } B) = P(A) \times P(B) \).

EXAMPLE 3.25
If we shuffle up a deck of cards and draw one, is the event that the card is a heart independent of the event that the card is an ace?

The probability the card is a heart is \(1/4 \) and the probability that it is an ace is \(1/13 \). The probability the card is the ace of hearts is \(1/52 \). We check whether \(P(A \text{ and } B) = P(A) \times P(B) \) is satisfied:
\[P(\text{heart}) \times P(\text{ace}) = \frac{1}{4} \times \frac{1}{13} = \frac{1}{52} = P(\text{heart and ace}) \]
Because the equation holds, the event that the card is a heart and the event that the card is an ace are independent events.

18(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each are independent, we apply the Multiplication Rule for independent processes:
\[P(\text{all five are RH}) = P(\text{first = RH}, \text{second = RH}, ..., \text{fifth = RH}) \]
\[= P(\text{first = RH}) \times P(\text{second = RH}) \times \cdots \times P(\text{fifth = RH}) \]
\[= 0.91 \times 0.91 \times 0.91 \times 0.91 \times 0.91 = 0.624 \]
(b) Using the same reasoning as in (a), \(0.09 \times 0.09 \times 0.09 \times 0.09 \times 0.09 = 0.0000059 \)
(c) Use the complement, \(P(\text{all five are RH}) \), to answer this question:
\[P(\text{not all RH}) = 1 - P(\text{all RH}) = 1 - 0.624 = 0.376 \]

19The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the probability of sampling a woman. However, this probability does differ in other countries.
20Brief answers are provided. (a) This can be written in probability notation as \(P(\text{a randomly selected person is male and right-handed}) = 0.455 \). (b) 0.207. (c) 0.045. (d) 0.0093.
Exercises

3.1 True or false. Determine if the statements below are true or false, and explain your reasoning.
(a) If a fair coin is tossed many times and the last eight tosses are all heads, then the chance that the next toss will be heads is somewhat less than 50%.
(b) Drawing a face card (jack, queen, or king) and drawing a red card from a full deck of playing cards are mutually exclusive events.
(c) Drawing a face card and drawing an ace from a full deck of playing cards are mutually exclusive events.

3.2 Roulette wheel. The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance of capturing the ball.
(a) You watch a roulette wheel spin 3 consecutive times and the ball lands on a red slot each time. What is the probability that the ball will land on a red slot on the next spin?
(b) You watch a roulette wheel spin 300 consecutive times and the ball lands on a red slot each time. What is the probability that the ball will land on a red slot on the next spin?
(c) Are you equally confident of your answers to parts (a) and (b)? Why or why not?

3.3 Four games, one winner. Below are four versions of the same game. Your archnemesis gets to pick the version of the game, and then you get to choose how many times to flip a coin: 10 times or 100 times. Identify how many coin flips you should choose for each version of the game. It costs $1 to play each game. Explain your reasoning.
(a) If the proportion of heads is larger than 0.60, you win $1.
(b) If the proportion of heads is larger than 0.40, you win $1.
(c) If the proportion of heads is between 0.40 and 0.60, you win $1.
(d) If the proportion of heads is smaller than 0.30, you win $1.

3.4 Backgammon. Backgammon is a board game for two players in which the playing pieces are moved according to the roll of two dice. Players win by removing all of their pieces from the board, so it is usually good to roll high numbers. You are playing backgammon with a friend and you roll two 6s in your first roll and two 6s in your second roll. Your friend rolls two 3s in his first roll and again in his second roll. Your friend claims that you are cheating, because rolling double 6s twice in a row is very unlikely. Using probability, show that your rolls were just as likely as his.

3.5 Coin flips. If you flip a fair coin 10 times, what is the probability of
(a) getting all tails?
(b) getting all heads?
(c) getting at least one tails?

3.6 Dice rolls. If you roll a pair of fair dice, what is the probability of
(a) getting a sum of 1?
(b) getting a sum of 5?
(c) getting a sum of 12?
3.1 DEFINING PROBABILITY

3.7 Swing voters. A Pew Research survey asked 2,373 randomly sampled registered voters their political affiliation (Republican, Democrat, or Independent) and whether or not they identify as swing voters. 35% of respondents identified as Independent, 23% identified as swing voters, and 11% identified as both.\(^{21}\)

(a) Are being Independent and being a swing voter disjoint, i.e. mutually exclusive?
(b) Draw a Venn diagram summarizing the variables and their associated probabilities.
(c) What percent of voters are Independent but not swing voters?
(d) What percent of voters are Independent or swing voters?
(e) What percent of voters are neither Independent nor swing voters?
(f) Is the event that someone is a swing voter independent of the event that someone is a political Independent?

3.8 Poverty and language. The American Community Survey is an ongoing survey that provides data every year to give communities the current information they need to plan investments and services. The 2010 American Community Survey estimates that 14.6% of Americans live below the poverty line, 20.7% speak a language other than English (foreign language) at home, and 4.2% fall into both categories.\(^{22}\)

(a) Are living below the poverty line and speaking a foreign language at home disjoint?
(b) Draw a Venn diagram summarizing the variables and their associated probabilities.
(c) What percent of Americans live below the poverty line and only speak English at home?
(d) What percent of Americans live below the poverty line or speak a foreign language at home?
(e) What percent of Americans live above the poverty line and only speak English at home?
(f) Is the event that someone lives below the poverty line independent of the event that the person speaks a foreign language at home?

3.9 Disjoint vs. independent. In parts (a) and (b), identify whether the events are disjoint, independent, or neither (events cannot be both disjoint and independent).

(a) You and a randomly selected student from your class both earn A’s in this course.
(b) You and your class study partner both earn A’s in this course.
(c) If two events can occur at the same time, must they be dependent?

3.10 Guessing on an exam. In a multiple choice exam, there are 5 questions and 4 choices for each question (a, b, c, d). Nancy has not studied for the exam at all and decides to randomly guess the answers. What is the probability that:

(a) the first question she gets right is the 5\(^{th}\) question?
(b) she gets all of the questions right?
(c) she gets at least one question right?

\(^{21}\) Pew Research Center, With Voters Focused on Economy, Obama Lead Narrows, data collected between April 4-15, 2012.

\(^{22}\) U.S. Census Bureau, 2010 American Community Survey 1-Year Estimates, Characteristics of People by Language Spoken at Home.
3.11 Educational attainment of couples. The table below shows the distribution of education level attained by US residents by gender based on data collected in the 2010 American Community Survey.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 9th grade</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>9th to 12th grade, no diploma</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>Highest education attained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS graduate (or equivalent)</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Some college, no degree</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>Associate’s degree</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Graduate or professional degree</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(a) What is the probability that a randomly chosen man has at least a Bachelor’s degree?
(b) What is the probability that a randomly chosen woman has at least a Bachelor’s degree?
(c) What is the probability that a man and a woman getting married both have at least a Bachelor’s degree? Note any assumptions you must make to answer this question.
(d) If you made an assumption in part (c), do you think it was reasonable? If you didn’t make an assumption, double check your earlier answer and then return to this part.

3.12 School absences. Data collected at elementary schools in DeKalb County, GA suggest that each year roughly 25% of students miss exactly one day of school, 15% miss 2 days, and 28% miss 3 or more days due to sickness.

(a) What is the probability that a student chosen at random doesn’t miss any days of school due to sickness this year?
(b) What is the probability that a student chosen at random misses no more than one day?
(c) What is the probability that a student chosen at random misses at least one day?
(d) If a parent has two kids at a DeKalb County elementary school, what is the probability that neither kid will miss any school? Note any assumption you must make to answer this question.
(e) If a parent has two kids at a DeKalb County elementary school, what is the probability that both kids will miss some school, i.e. at least one day? Note any assumption you make.
(f) If you made an assumption in part (d) or (e), do you think it was reasonable? If you didn’t make any assumptions, double check your earlier answers.

3.2 Conditional probability

There can be rich relationships between two or more variables that are useful to understand. For example a car insurance company will consider information about a person’s driving history to assess the risk that they will be responsible for an accident. These types of relationships are the realm of conditional probabilities.

3.2.1 Exploring probabilities with a contingency table

The photo_classify data set represents a classifier a sample of 1822 photos from a photo sharing website. Data scientists have been working to improve a classifier for whether the photo is about fashion or not, and these 1822 photos represent a test for their classifier. Each photo gets two classifications: the first is called mach_learn and gives a classification from a machine learning (ML) system of either pred_fashion or pred_not. Each of these 1822 photos have also been classified carefully by a team of people, which we take to be the source of truth; this variable is called truth and takes values fashion and not. Figure 3.11 summarizes the results.

<p>| mach_learn | truth | | |</p>
<table>
<thead>
<tr>
<th></th>
<th>fashion</th>
<th>not</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred_fashion</td>
<td>197</td>
<td>22</td>
<td>219</td>
</tr>
<tr>
<td>pred_not</td>
<td>112</td>
<td>1491</td>
<td>1603</td>
</tr>
<tr>
<td>Total</td>
<td>309</td>
<td>1513</td>
<td>1822</td>
</tr>
</tbody>
</table>

Figure 3.11: Contingency table summarizing the photo_classify data set.

Example 3.26

If a photo is actually about fashion, what is the chance the ML classifier correctly identified the photo as being about fashion?

We can estimate this probability using the data. Of the 309 fashion photos, the ML algorithm correctly classified 197 of the photos:

\[
P(\text{mach_learn is pred_fashion given truth is fashion}) = \frac{197}{309} = 0.638
\]
EXAMPLE 3.27
We sample a photo from the data set and learn the ML algorithm predicted this photo was not about fashion. What is the probability that it was incorrect and the photo is about fashion?

If the ML classifier suggests a photo is not about fashion, then it comes from the second row in the data set. Of these 1603 photos, 112 were actually about fashion:

\[
P(\text{truth is fashion given mach_learn is pred_not}) = \frac{112}{1603} = 0.070
\]

3.2.2 Marginal and joint probabilities

Figure 3.11 includes row and column totals for each variable separately in the photo_classify data set. These totals represent marginal probabilities for the sample, which are the probabilities based on a single variable without regard to any other variables. For instance, a probability based solely on the mach_learn variable is a marginal probability:

\[
P(\text{mach_learn is pred_fashion}) = \frac{219}{1822} = 0.12
\]

A probability of outcomes for two or more variables or processes is called a joint probability:

\[
P(\text{mach_learn is pred_fashion and truth is fashion}) = \frac{197}{1822} = 0.11
\]

It is common to substitute a comma for “and” in a joint probability, although using either the word “and” or a comma is acceptable:

\[
P(\text{mach_learn is pred_fashion, truth is fashion})
\]

means the same thing as

\[
P(\text{mach_learn is pred_fashion and truth is fashion})
\]

MARGINAL AND JOINT PROBABILITIES

If a probability is based on a single variable, it is a marginal probability. The probability of outcomes for two or more variables or processes is called a joint probability.

We use table proportions to summarize joint probabilities for the photo_classify sample. These proportions are computed by dividing each count in Figure 3.11 by the table’s total, 1822, to obtain the proportions in Figure 3.13. The joint probability distribution of the mach_learn and truth variables is shown in Figure 3.14.

<table>
<thead>
<tr>
<th></th>
<th>truth: fashion</th>
<th>truth: not</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>mach_learn: pred_fashion</td>
<td>0.1081</td>
<td>0.0121</td>
<td>0.1202</td>
</tr>
<tr>
<td>mach_learn: pred_not</td>
<td>0.0615</td>
<td>0.8183</td>
<td>0.8798</td>
</tr>
<tr>
<td>Total</td>
<td>0.1696</td>
<td>0.8304</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 3.13: Probability table summarizing the photo_classify data set.
3.2. CONDITIONAL PROBABILITY

<table>
<thead>
<tr>
<th>Joint outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>mach_learn is pred_fashion and truth is fashion</td>
<td>0.1081</td>
</tr>
<tr>
<td>mach_learn is pred_fashion and truth is not</td>
<td>0.0121</td>
</tr>
<tr>
<td>mach_learn is pred_not and truth is fashion</td>
<td>0.0615</td>
</tr>
<tr>
<td>mach_learn is pred_not and truth is not</td>
<td>0.8183</td>
</tr>
<tr>
<td>Total</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Figure 3.14: Joint probability distribution for the photo_classify data set.

GUIDED PRACTICE 3.28

Verify Figure 3.14 represents a probability distribution: events are disjoint, all probabilities are non-negative, and the probabilities sum to 1.\(^{25}\)

We can compute marginal probabilities using joint probabilities in simple cases. For example, the probability a randomly selected photo from the data set is about fashion is found by summing the outcomes where truth takes value fashion:

\[
P(\text{truth is fashion}) = P(\text{mach_learn is pred_fashion and truth is fashion}) + P(\text{mach_learn is pred_not and truth is fashion})
\]

\[
= 0.1081 + 0.0615 = 0.1696
\]

3.2.3 Defining conditional probability

The ML classifier predicts whether a photo is about fashion, even if it is not perfect. We would like to better understand how to use information from a variable like mach_learn to improve our probability estimation of a second variable, which in this example is truth.

The probability that a random photo from the data set is about fashion is about 0.17. If we knew the machine learning classifier predicted the photo was about fashion, could we get a better estimate of the probability the photo is actually about fashion? Absolutely. To do so, we limit our view to only those 219 cases where the ML classifier predicted that the photo was about fashion and look at the fraction where the photo was actually about fashion:

\[
P(\text{truth is fashion given mach_learn is pred_fashion}) = \frac{197}{219} = 0.900
\]

We call this a conditional probability because we computed the probability under a condition: the ML classifier prediction said the photo was about fashion.

There are two parts to a conditional probability, the outcome of interest and the condition. It is useful to think of the condition as information we know to be true, and this information usually can be described as a known outcome or event. We generally separate the text inside our probability notation into the outcome of interest and the condition with a vertical bar:

\[
P(\text{truth is fashion given mach_learn is pred_fashion}) = P(\text{truth is fashion | mach_learn is pred_fashion}) = \frac{197}{219} = 0.900
\]

The vertical bar “|” is read as given.

\(^{25}\)Each of the four outcome combination are disjoint, all probabilities are indeed non-negative, and the sum of the probabilities is 0.1081 + 0.0121 + 0.0615 + 0.8183 = 1.00.
In the last equation, we computed the probability a photo was about fashion based on the condition that the ML algorithm predicted it was about fashion as a fraction:

\[
P(\text{truth is fashion} \mid \text{mach _learn is pred _fashion}) = \frac{\# \text{ cases where truth is fashion and mach _learn is pred _fashion}}{\# \text{ cases where mach _learn is pred _fashion}}
\]
\[
= \frac{197}{219} = 0.900
\]

We considered only those cases that met the condition, \text{mach _learn is pred _fashion}, and then we computed the ratio of those cases that satisfied our outcome of interest, photo was actually about fashion.

Frequently, marginal and joint probabilities are provided instead of count data. For example, disease rates are commonly listed in percentages rather than in a count format. We would like to be able to compute conditional probabilities even when no counts are available, and we use the last equation as a template to understand this technique.

We considered only those cases that satisfied the condition, where the ML algorithm predicted fashion. Of these cases, the conditional probability was the fraction representing the outcome of interest, that the photo was about fashion. Suppose we were provided only the information in Figure 3.13, i.e. only probability data. Then if we took a sample of 1000 photos, we would anticipate about 12.0% or \(0.120 \times 1000 = 120\) would be predicted to be about fashion (\text{mach _learn is pred _fashion}). Similarly, we would expect about 10.8% or \(0.108 \times 1000 = 108\) to meet both the information criteria and represent our outcome of interest. Then the conditional probability can be computed as

\[
P(\text{truth is fashion} \mid \text{mach _learn is pred _fashion}) = \frac{\#(\text{truth is fashion and mach _learn is pred _fashion})}{\#(\text{mach _learn is pred _fashion})}
\]
\[
= \frac{108}{120} = 0.900
\]

Here we are examining exactly the fraction of two probabilities, 0.108 and 0.120, which we can write as

\[
P(\text{truth is fashion and mach _learn is pred _fashion}) \quad \text{and} \quad P(\text{mach _learn is pred _fashion}).
\]

The fraction of these probabilities is an example of the general formula for conditional probability.

\[
\text{CONDITIONAL PROBABILITY}
\]

The conditional probability of outcome \(A\) given condition \(B\) is computed as the following:

\[
P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}
\]

GUIDED PRACTICE 3.29

(a) Write out the following statement in conditional probability notation: “The probability that the ML prediction was correct, if the photo was about fashion”. Here the condition is now based on the photo’s truth status, not the ML algorithm.

(b) Determine the probability from part (a). Table 3.13 on page 96 may be helpful.\(^{26}\)

\(^{26}\)(a) If the photo is about fashion and the ML algorithm prediction was correct, then the ML algorithm may have a value of pred _fashion:

\[
P(\text{mach _learn is pred _fashion} \mid \text{truth is fashion})
\]

(b) The equation for conditional probability indicates we should first find

\[
P(\text{mach _learn is pred _fashion and truth is fashion}) = 0.1081 \text{ and } P(\text{truth is fashion}) = 0.1696.
\]

Then the ratio represents the conditional probability: \(0.1081/0.1696 = 0.6374\).
3.2. CONDITIONAL PROBABILITY

GUIDED PRACTICE 3.30
(a) Determine the probability that the algorithm is incorrect if it is known the photo is about fashion.
(b) Using the answers from part (a) and Guided Practice 3.29(b), compute
\[
P(\text{mach learn is pred fashion} \mid \text{truth is fashion}) \\
+ P(\text{mach learn is pred not} \mid \text{truth is fashion})
\]
(c) Provide an intuitive argument to explain why the sum in (b) is 1.\(^{27}\)

3.2.4 Smallpox in Boston, 1721

The smallpox data set provides a sample of 6,224 individuals from the year 1721 who were exposed to smallpox in Boston. Doctors at the time believed that inoculation, which involves exposing a person to the disease in a controlled form, could reduce the likelihood of death.

Each case represents one person with two variables: inoculated and result. The variable inoculated takes two levels: yes or no, indicating whether the person was inoculated or not. The variable result has outcomes lived or died. These data are summarized in Tables 3.15 and 3.16.

<table>
<thead>
<tr>
<th>inoculated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>lived</td>
<td>238</td>
</tr>
<tr>
<td>died</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>244</td>
</tr>
</tbody>
</table>

| result | inoculated | |
|------------|------------|
| lived | yes 0.0382 |
| died | no 0.8252 |
| Total | 0.8634 |

Figure 3.15: Contingency table for the smallpox data set.

<table>
<thead>
<tr>
<th>inoculated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>lived</td>
<td>5136</td>
</tr>
<tr>
<td>died</td>
<td>844</td>
</tr>
<tr>
<td>Total</td>
<td>5980</td>
</tr>
</tbody>
</table>

| result | inoculated | |
|------------|------------|
| lived | yes 0.8252 |
| died | no 0.1356 |
| Total | 0.9608 |

Figure 3.16: Table proportions for the smallpox data, computed by dividing each count by the table total, 6224.

GUIDED PRACTICE 3.31
Write out, in formal notation, the probability a randomly selected person who was not inoculated died from smallpox, and find this probability.\(^{28}\)

GUIDED PRACTICE 3.32
Determine the probability that an inoculated person died from smallpox. How does this result compare with the result of Guided Practice 3.31?\(^{29}\)

\(^{27}\) (a) This probability is \(P(\text{mach learn is pred not, truth is fashion}) = 0.0615 \div 0.1696 = 0.3626\). (b) The total equals 1. (c) Under the condition the photo is about fashion, the ML algorithm must have either predicted it was about fashion or predicted it was not about fashion. The complement still works for conditional probabilities, provided the probabilities are conditioned on the same information.

\(^{28}\) \(P(\text{result = died} \mid \text{inoculated = no}) = \frac{P(\text{result = died and inoculated = no})}{P(\text{inoculated = no})} = 0.1356 \div 0.8634 = 0.1511\).\(^{29}\) \(P(\text{result = died} \mid \text{inoculated = yes}) = \frac{P(\text{result = died and inoculated = yes})}{P(\text{inoculated = yes})} = 0.0010 \div 0.1356 = 0.0074\) (if we avoided rounding errors, we’d get 6/244 = 0.0246). The death rate for individuals who were inoculated is only about 1 in 40 while the death rate is about 1 in 7 for those who were not inoculated.
CHAPTER 3. PROBABILITY

GUIDED PRACTICE 3.33

The people of Boston self-selected whether or not to be inoculated. (a) Is this study observational or was this an experiment? (b) Can we infer any causal connection using these data? (c) What are some potential confounding variables that might influence whether someone lived or died and also affect whether that person was inoculated?

3.2.5 General multiplication rule

Section 3.1.7 introduced the Multiplication Rule for independent processes. Here we provide the General Multiplication Rule for events that might not be independent.

GENERAL MULTIPLICATION RULE

If A and B represent two outcomes or events, then

$$P(A \text{ and } B) = P(A|B) \times P(B)$$

It is useful to think of A as the outcome of interest and B as the condition.

This General Multiplication Rule is simply a rearrangement of the conditional probability equation.

EXAMPLE 3.34

Consider the smallpox data set. Suppose we are given only two pieces of information: 96.08% of residents were not inoculated, and 85.88% of the residents who were not inoculated ended up surviving. How could we compute the probability that a resident was not inoculated and lived?

We will compute our answer using the General Multiplication Rule and then verify it using Figure 3.16. We want to determine

$$P(\text{result }= \text{ lived and inoculated }= \text{ no})$$

and we are given that

$$P(\text{result }= \text{ lived }| \text{ inoculated }= \text{ no}) = 0.8588 \quad P(\text{inoculated }= \text{ no}) = 0.9608$$

Among the 96.08% of people who were not inoculated, 85.88% survived:

$$P(\text{result }= \text{ lived and inoculated }= \text{ no}) = 0.8588 \times 0.9608 = 0.8251$$

This is equivalent to the General Multiplication Rule. We can confirm this probability in Figure 3.16 at the intersection of no and lived (with a small rounding error).

GUIDED PRACTICE 3.35

Use $P(\text{inoculated }= \text{ yes}) = 0.0392$ and $P(\text{result }= \text{ lived }| \text{ inoculated }= \text{ yes}) = 0.9754$ to determine the probability that a person was both inoculated and lived.

GUIDED PRACTICE 3.36

If 97.54% of the inoculated people lived, what proportion of inoculated people must have died?

30 Brief answers: (a) Observational. (b) No, we cannot infer causation from this observational study. (c) Accessibility to the latest and best medical care. There are other valid answers for part (c).

31 The answer is 0.0382, which can be verified using Figure 3.16.

32 There were only two possible outcomes: lived or died. This means that 100% - 97.54% = 2.46% of the people who were inoculated died.
3.2. CONDITIONAL PROBABILITY

SUM OF CONDITIONAL PROBABILITIES

Let \(A_1, \ldots, A_k \) represent all the disjoint outcomes for a variable or process. Then if \(B \) is an event, possibly for another variable or process, we have:

\[
P(A_1|B) + \cdots + P(A_k|B) = 1
\]

The rule for complements also holds when an event and its complement are conditioned on the same information:

\[
P(A|B) = 1 - P(A^c|B)
\]

GUIDED PRACTICE 3.37

Based on the probabilities computed above, does it appear that inoculation is effective at reducing the risk of death from smallpox?\(^{33}\)

3.2.6 Independence considerations in conditional probability

If two events are independent, then knowing the outcome of one should provide no information about the other. We can show this is mathematically true using conditional probabilities.

GUIDED PRACTICE 3.38

Let \(X \) and \(Y \) represent the outcomes of rolling two dice.\(^{34}\)

(a) What is the probability that the first die, \(X \), is 1?
(b) What is the probability that both \(X \) and \(Y \) are 1?
(c) Use the formula for conditional probability to compute \(P(Y = 1 \mid X = 1) \).
(d) What is \(P(Y = 1) \)? Is this different from the answer from part (c)? Explain.

We can show in Guided Practice 3.38(c) that the conditioning information has no influence by using the Multiplication Rule for independence processes:

\[
P(Y = 1 \mid X = 1) = \frac{P(Y = 1 \text{ and } X = 1)}{P(X = 1)}
= \frac{P(Y = 1) \times P(X = 1)}{P(X = 1)}
= P(Y = 1)
\]

GUIDED PRACTICE 3.39

Ron is watching a roulette table in a casino and notices that the last five outcomes were black. He figures that the chances of getting black six times in a row is very small (about 1/64) and puts his paycheck on red. What is wrong with his reasoning?\(^{35}\)

\[^{33}\text{The samples are large relative to the difference in death rates for the “inoculated” and “not inoculated” groups, so it seems there is an association between inoculated and outcome. However, as noted in the solution to Guided Practice 3.33, this is an observational study and we cannot be sure there is a causal connection. (Further research has shown that inoculation is effective at reducing death rates.)}\]

\[^{34}\text{Brief solutions: (a) 1/6. (b) 1/36. (c) } \frac{P(Y = 1 \text{ and } X = 1)}{P(X = 1)} = \frac{1/36}{1/6} = 1/6. \text{ (d) The probability is the same as in part (c): } P(Y = 1) = 1/6. \text{ The probability that } Y = 1 \text{ was unchanged by knowledge about } X, \text{ which makes sense as } X \text{ and } Y \text{ are independent.}\]

\[^{35}\text{He has forgotten that the next roulette spin is independent of the previous spins. Casinos do employ this practice, posting the last several outcomes of many betting games to trick unsuspecting gamblers into believing the odds are in their favor. This is called the gambler’s fallacy.}\]
3.2.7 Tree diagrams

Tree diagrams are a tool to organize outcomes and probabilities around the structure of the data. They are most useful when two or more processes occur in a sequence and each process is conditioned on its predecessors.

The smallpox data fit this description. We see the population as split by inoculation: yes and no. Following this split, survival rates were observed for each group. This structure is reflected in the tree diagram shown in Figure 3.17. The first branch for inoculation is said to be the **primary** branch while the other branches are **secondary**.

![Tree diagram of the smallpox data set.](image)

Figure 3.17: A tree diagram of the smallpox data set.

Tree diagrams are annotated with marginal and conditional probabilities, as shown in Figure 3.17. This tree diagram splits the smallpox data by inoculation into the yes and no groups with respective marginal probabilities 0.0392 and 0.9608. The secondary branches are conditioned on the first, so we assign conditional probabilities to these branches. For example, the top branch in Figure 3.17 is the probability that result = lived conditioned on the information that inoculated = yes. We may (and usually do) construct joint probabilities at the end of each branch in our tree by multiplying the numbers we come across as we move from left to right. These joint probabilities are computed using the General Multiplication Rule:

\[
P(\text{inoculated = yes and result = lived}) = P(\text{inoculated = yes}) \times P(\text{result = lived}|\text{inoculated = yes})
\]

\[
= 0.0392 \times 0.9754 = 0.0382
\]
EXAMPLE 3.40
Consider the midterm and final for a statistics class. Suppose 13% of students earned an A on the midterm. Of those students who earned an A on the midterm, 47% received an A on the final, and 11% of the students who earned lower than an A on the midterm received an A on the final. You randomly pick up a final exam and notice the student received an A. What is the probability that this student earned an A on the midterm?

The end-goal is to find $P(\text{midterm} = A | \text{final} = A)$. To calculate this conditional probability, we need the following probabilities:

$$P(\text{midterm} = A \text{ and } \text{final} = A) \quad \text{and} \quad P(\text{final} = A)$$

However, this information is not provided, and it is not obvious how to calculate these probabilities. Since we aren’t sure how to proceed, it is useful to organize the information into a tree diagram:

```
Midterm          Final
    A, 0.13              A, 0.47
                      0.13*0.47 = 0.0611
   other, 0.53
          0.13*0.53 = 0.0689
A, 0.11
other, 0.87
          0.87*0.11 = 0.0957
     other, 0.89
                0.87*0.89 = 0.7743
```

When constructing a tree diagram, variables provided with marginal probabilities are often used to create the tree’s primary branches; in this case, the marginal probabilities are provided for midterm grades. The final grades, which correspond to the conditional probabilities provided, will be shown on the secondary branches.

With the tree diagram constructed, we may compute the required probabilities:

$$P(\text{midterm} = A \text{ and } \text{final} = A) = 0.0611$$

$$P(\text{final} = A) = P(\text{midterm} = \text{other and final} = A) + P(\text{midterm} = A \text{ and final} = A)$$

$$= 0.0957 + 0.0611 = 0.1568$$

The marginal probability, $P(\text{final} = A)$, was calculated by adding up all the joint probabilities on the right side of the tree that correspond to final = A. We may now finally take the ratio of the two probabilities:

$$P(\text{midterm} = A | \text{final} = A) = \frac{P(\text{midterm} = A \text{ and final} = A)}{P(\text{final} = A)}$$

$$= \frac{0.0611}{0.1568} = 0.3897$$

The probability the student also earned an A on the midterm is about 0.39.
After an introductory statistics course, 78% of students can successfully construct tree diagrams. Of those who can construct tree diagrams, 97% passed, while only 57% of those students who could not construct tree diagrams passed. (a) Organize this information into a tree diagram. (b) What is the probability that a randomly selected student passed? (c) Compute the probability a student is able to construct a tree diagram if it is known that she passed.\(^3\)

3.2.8 Bayes' Theorem

In many instances, we are given a conditional probability of the form

\[P(\text{statement about variable 1} \mid \text{statement about variable 2}) \]

but we would really like to know the inverted conditional probability:

\[P(\text{statement about variable 2} \mid \text{statement about variable 1}) \]

Tree diagrams can be used to find the second conditional probability when given the first. However, sometimes it is not possible to draw the scenario in a tree diagram. In these cases, we can apply a very useful and general formula: Bayes' Theorem.

We first take a critical look at an example of inverting conditional probabilities where we still apply a tree diagram.

\(^3\) (a) The tree diagram is shown to the right.
(b) Identify which two joint probabilities represent students who passed, and add them: \(P(\text{passed}) = 0.7566 + 0.1254 = 0.8820 \).
(c) \(P(\text{construct tree diagram} \mid \text{passed}) = \frac{0.7566}{0.8820} = 0.8578 \).

36 (a) The tree diagram is shown to the right.
(b) Identify which two joint probabilities represent students who passed, and add them: \(P(\text{passed}) = 0.7566 + 0.1254 = 0.8820 \).
(c) \(P(\text{construct tree diagram} \mid \text{passed}) = \frac{0.7566}{0.8820} = 0.8578 \).
EXAMPLE 3.42

In Canada, about 0.35% of women over 40 will develop breast cancer in any given year. A common screening test for cancer is the mammogram, but this test is not perfect. In about 11% of patients with breast cancer, the test gives a false negative: it indicates a woman does not have breast cancer when she does have breast cancer. Similarly, the test gives a false positive in 7% of patients who do not have breast cancer: it indicates these patients have breast cancer when they actually do not. If we tested a random woman over 40 for breast cancer using a mammogram and the test came back positive – that is, the test suggested the patient has cancer – what is the probability that the patient actually has breast cancer?

Notice that we are given sufficient information to quickly compute the probability of testing positive if a woman has breast cancer (1.00 – 0.11 = 0.89). However, we seek the inverted probability of cancer given a positive test result. (Watch out for the non-intuitive medical language: a positive test result suggests the possible presence of cancer in a mammogram screening.) This inverted probability may be broken into two pieces:

\[
P(\text{has BC | mammogram}^+) = \frac{P(\text{has BC and mammogram}^+)}{P(\text{mammogram}^+)}
\]

where “has BC” is an abbreviation for the patient having breast cancer and “mammogram^+” means the mammogram screening was positive. We can construct a tree diagram for these probabilities:

The probability the patient has breast cancer and the mammogram is positive is

\[
P(\text{has BC and mammogram}^+) = P(\text{mammogram}^+ | \text{has BC})P(\text{has BC}) = 0.89 \times 0.0035 = 0.00312
\]

The probability of a positive test result is the sum of the two corresponding scenarios:

\[
P(\text{mammogram}^+) = P(\text{mammogram}^+ | \text{has BC}) + P(\text{mammogram}^+ | \text{no BC})
\]

\[
= P(\text{has BC})P(\text{mammogram}^+ | \text{has BC}) + P(\text{no BC})P(\text{mammogram}^+ | \text{no BC})
\]

\[
= 0.0035 \times 0.89 + 0.9965 \times 0.07 = 0.07288
\]

Then if the mammogram screening is positive for a patient, the probability the patient has breast cancer is

\[
P(\text{has BC | mammogram}^+) = \frac{P(\text{has BC and mammogram}^+)}{P(\text{mammogram}^+)} = \frac{0.00312}{0.07288} \approx 0.0428
\]

That is, even if a patient has a positive mammogram screening, there is still only a 4% chance that she has breast cancer.
Example 3.42 highlights why doctors often run more tests regardless of a first positive test result. When a medical condition is rare, a single positive test isn’t generally definitive.

Consider again the last equation of Example 3.42. Using the tree diagram, we can see that the numerator (the top of the fraction) is equal to the following product:

\[P(\text{has BC and mammogram}^+) = P(\text{mammogram}^+ | \text{has BC})P(\text{has BC}) \]

The denominator – the probability the screening was positive – is equal to the sum of probabilities for each positive screening scenario:

\[P(\text{mammogram}^+) = P(\text{mammogram}^+ \text{ and no BC}) + P(\text{mammogram}^+ \text{ and has BC}) \]

In the example, each of the probabilities on the right side was broken down into a product of a conditional probability and marginal probability using the tree diagram.

\[P(\text{mammogram}^+) = P(\text{mammogram}^+ | \text{no BC})P(\text{no BC}) + P(\text{mammogram}^+ | \text{has BC})P(\text{has BC}) \]

We can see an application of Bayes' Theorem by substituting the resulting probability expressions into the numerator and denominator of the original conditional probability.

\[P(\text{has BC | mammogram}^+) = \frac{P(\text{mammogram}^+ | \text{has BC})P(\text{has BC})}{P(\text{mammogram}^+ | \text{no BC})P(\text{no BC}) + P(\text{mammogram}^+ | \text{has BC})P(\text{has BC})} \]

Bayes’ Theorem: Inverting Probabilities

Consider the following conditional probability for variable 1 and variable 2:

\[P(\text{outcome } A \text{ of variable 1 | outcome } B \text{ of variable 2}) \]

Bayes' Theorem states that this conditional probability can be identified as the following fraction:

\[\frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \cdots + P(B|A_k)P(A_k)} \]

where \(A_2, A_3, \ldots, \text{ and } A_k \) represent all other possible outcomes of the first variable.

Bayes’ Theorem is a generalization of what we have done using tree diagrams. The numerator identifies the probability of getting both \(A_1 \) and \(B \). The denominator is the marginal probability of getting \(B \). This bottom component of the fraction appears long and complicated since we have to add up probabilities from all of the different ways to get \(B \). We always completed this step when using tree diagrams. However, we usually did it in a separate step so it didn’t seem as complex.

To apply Bayes’ Theorem correctly, there are two preparatory steps:

1. First identify the marginal probabilities of each possible outcome of the first variable: \(P(A_1), P(A_2), \ldots, P(A_k) \).
2. Then identify the probability of the outcome \(B \), conditioned on each possible scenario for the first variable: \(P(B|A_1), P(B|A_2), \ldots, P(B|A_k) \).

Once each of these probabilities are identified, they can be applied directly within the formula. Bayes’ Theorem tends to be a good option when there are so many scenarios that drawing a tree diagram would be complex.
3.2. CONDITIONAL PROBABILITY

GUIDED PRACTICE 3.43

Jose visits campus every Thursday evening. However, some days the parking garage is full, often due to college events. There are academic events on 35% of evenings, sporting events on 20% of evenings, and no events on 45% of evenings. When there is an academic event, the garage fills up about 25% of the time, and it fills up 70% of evenings with sporting events. On evenings when there are no events, it only fills up about 5% of the time. If Jose comes to campus and finds the garage full, what is the probability that there is a sporting event? Use a tree diagram to solve this problem.\(^{37}\)

EXAMPLE 3.44

Here we solve the same problem presented in Guided Practice 3.43, except this time we use Bayes’ Theorem.

The outcome of interest is whether there is a sporting event (call this \(A_1\)), and the condition is that the lot is full (\(B\)). Let \(A_2\) represent an academic event and \(A_3\) represent there being no event on campus. Then the given probabilities can be written as

\[
\begin{align*}
P(A_1) &= 0.2 \\
P(A_2) &= 0.35 \\
P(A_3) &= 0.45
\end{align*}
\]

\[
\begin{align*}
P(B|A_1) &= 0.7 \\
P(B|A_2) &= 0.25 \\
P(B|A_3) &= 0.05
\end{align*}
\]

Bayes’ Theorem can be used to compute the probability of a sporting event (\(A_1\)) under the condition that the parking lot is full (\(B\)):

\[
P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)} = \frac{(0.7)(0.2)}{(0.7)(0.2) + (0.25)(0.35) + (0.05)(0.45)} = 0.56
\]

Based on the information that the garage is full, there is a 56% probability that a sporting event is being held on campus that evening.

\[^{37}\text{The tree diagram, with three primary branches, is shown to the right. Next, we identify two probabilities from the tree diagram. (1) The probability that there is a sporting event and the garage is full: 0.14. (2) The probability the garage is full: 0.0875 + 0.14 + 0.0225 = 0.25. Then the solution is the ratio of these probabilities: } \frac{0.14}{0.25} = 0.56. \text{ If the garage is full, there is a 56% probability that there is a sporting event.}\]
GUIDED PRACTICE 3.45
Use the information in the previous exercise and example to verify the probability that there is an academic event conditioned on the parking lot being full is 0.35.\(^{38}\)

GUIDED PRACTICE 3.46
In Guided Practice 3.43 and 3.45, you found that if the parking lot is full, the probability there is a sporting event is 0.56 and the probability there is an academic event is 0.35. Using this information, compute \(P(\text{no event | the lot is full})\).\(^{39}\)

The last several exercises offered a way to update our belief about whether there is a sporting event, academic event, or no event going on at the school based on the information that the parking lot was full. This strategy of updating beliefs using Bayes’ Theorem is actually the foundation of an entire section of statistics called \textbf{Bayesian statistics}. While Bayesian statistics is very important and useful, we will not have time to cover much more of it in this book.

\(^{38}\)Short answer:

\[
P(A_2|B) = \frac{P(B|A_2)P(A_2)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)}
= \frac{(0.25)(0.35)}{(0.7)(0.2) + (0.25)(0.35) + (0.05)(0.45)}
= 0.35
\]

\(^{39}\)Each probability is conditioned on the same information that the garage is full, so the complement may be used: \(1.00 - 0.56 - 0.35 = 0.09\).
3.2. CONDITIONAL PROBABILITY

Exercises

3.13 Joint and conditional probabilities. \(P(A) = 0.3, P(B) = 0.7\)
(a) Can you compute \(P(A \text{ and } B)\) if you only know \(P(A)\) and \(P(B)\)?
(b) Assuming that events A and B arise from independent random processes,
 i. what is \(P(A \text{ and } B)\)?
 ii. what is \(P(A \text{ or } B)\)?
 iii. what is \(P(A | B)\)?
(c) If we are given that \(P(A \text{ and } B) = 0.1\), are the random variables giving rise to events A and B independent?
(d) If we are given that \(P(A \text{ and } B) = 0.1\), what is \(P(A | B)\)?

3.14 PB & J. Suppose 80% of people like peanut butter, 89% like jelly, and 78% like both. Given that a randomly sampled person likes peanut butter, what’s the probability that he also likes jelly?

3.15 Global warming. A Pew Research poll asked 1,306 Americans “From what you’ve read and heard, is there solid evidence that the average temperature on earth has been getting warmer over the past few decades, or not?”. The table below shows the distribution of responses by party and ideology, where the counts have been replaced with relative frequencies.

<table>
<thead>
<tr>
<th>Response</th>
<th>Earth is warming</th>
<th>Not warming</th>
<th>Don’t Know</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party and Ideology</td>
<td>Conservative Republican</td>
<td>0.11</td>
<td>0.20</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Mod/Lib Republican</td>
<td>0.06</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Mod/Cons Democrat</td>
<td>0.25</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Liberal Democrat</td>
<td>0.18</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>0.60</td>
<td>0.34</td>
<td>0.06</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(a) Are believing that the earth is warming and being a liberal Democrat mutually exclusive?
(b) What is the probability that a randomly chosen respondent believes the earth is warming or is a liberal Democrat?
(c) What is the probability that a randomly chosen respondent believes the earth is warming given that he is a liberal Democrat?
(d) What is the probability that a randomly chosen respondent believes the earth is warming given that he is a conservative Republican?
(e) Does it appear that whether or not a respondent believes the earth is warming is independent of their party and ideology? Explain your reasoning.
(f) What is the probability that a randomly chosen respondent is a moderate/liberal Republican given that he does not believe that the earth is warming?

40 Pew Research Center, Majority of Republicans No Longer See Evidence of Global Warming, data collected on October 27, 2010.
3.16 Health coverage, relative frequencies. The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone survey designed to identify risk factors in the adult population and report emerging health trends. The following table displays the distribution of health status of respondents to this survey (excellent, very good, good, fair, poor) and whether or not they have health insurance.

<table>
<thead>
<tr>
<th>Health</th>
<th>Excellent</th>
<th>Very good</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0.0230</td>
<td>0.0364</td>
<td>0.0427</td>
<td>0.0192</td>
<td>0.0050</td>
<td>0.1262</td>
</tr>
<tr>
<td>Yes</td>
<td>0.2099</td>
<td>0.3123</td>
<td>0.2410</td>
<td>0.0817</td>
<td>0.0289</td>
<td>0.8738</td>
</tr>
<tr>
<td>Total</td>
<td>0.2329</td>
<td>0.3486</td>
<td>0.2838</td>
<td>0.1009</td>
<td>0.0338</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

(a) Are being in excellent health and having health coverage mutually exclusive?
(b) What is the probability that a randomly chosen individual has excellent health?
(c) What is the probability that a randomly chosen individual has excellent health given that he has health coverage?
(d) What is the probability that a randomly chosen individual has excellent health given that he doesn’t have health coverage?
(e) Do having excellent health and having health coverage appear to be independent?

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five Guys Burgers</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>In-N-Out Burger</td>
<td>162</td>
<td>181</td>
<td>343</td>
</tr>
<tr>
<td>Fat Burger</td>
<td>10</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Tommy’s Hamburgers</td>
<td>27</td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td>Umami Burger</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Other</td>
<td>26</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>Not Sure</td>
<td>13</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>248</td>
<td>252</td>
<td>500</td>
</tr>
</tbody>
</table>

(a) Are being female and liking Five Guys Burgers mutually exclusive?
(b) What is the probability that a randomly chosen male likes In-N-Out the best?
(c) What is the probability that a randomly chosen female likes In-N-Out the best?
(d) What is the probability that a man and a woman who are dating both like In-N-Out the best? Note any assumption you make and evaluate whether you think that assumption is reasonable.
(e) What is the probability that a randomly chosen person likes Umami best or that person is female?

41SurveyUSA, Results of SurveyUSA News Poll #17718, data collected on December 2, 2010.
3.18 **Assortative mating.** Assortative mating is a nonrandom mating pattern where individuals with similar genotypes and/or phenotypes mate with one another more frequently than what would be expected under a random mating pattern. Researchers studying this topic collected data on eye colors of 204 Scandinavian men and their female partners. The table below summarizes the results. For simplicity, we only include heterosexual relationships in this exercise.\(^{12}\)

<table>
<thead>
<tr>
<th>Partner (female)</th>
<th>Blue</th>
<th>Brown</th>
<th>Green</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>78</td>
<td>23</td>
<td>13</td>
<td>114</td>
</tr>
<tr>
<td>Brown</td>
<td>19</td>
<td>23</td>
<td>12</td>
<td>54</td>
</tr>
<tr>
<td>Green</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>108</td>
<td>55</td>
<td>41</td>
<td>204</td>
</tr>
</tbody>
</table>

(a) What is the probability that a randomly chosen male respondent or his partner has blue eyes?
(b) What is the probability that a randomly chosen male respondent with blue eyes has a partner with blue eyes?
(c) What is the probability that a randomly chosen male respondent with brown eyes has a partner with blue eyes? What about the probability of a randomly chosen male respondent with green eyes having a partner with blue eyes?
(d) Does it appear that the eye colors of male respondents and their partners are independent? Explain your reasoning.

3.19 **Drawing box plots.** After an introductory statistics course, 80% of students can successfully construct box plots. Of those who can construct box plots, 86% passed, while only 65% of those students who could not construct box plots passed.

(a) Construct a tree diagram of this scenario.
(b) Calculate the probability that a student is able to construct a box plot if it is known that he passed.

3.20 **Predisposition for thrombosis.** A genetic test is used to determine if people have a predisposition for thrombosis, which is the formation of a blood clot inside a blood vessel that obstructs the flow of blood through the circulatory system. It is believed that 3% of people actually have this predisposition. The genetic test is 99% accurate if a person actually has the predisposition, meaning that the probability of a positive test result when a person actually has the predisposition is 0.99. The test is 98% accurate if a person does not have the predisposition. What is the probability that a randomly selected person who tests positive for the predisposition by the test actually has the predisposition?

3.21 **It’s never lupus.** Lupus is a medical phenomenon where antibodies that are supposed to attack foreign cells to prevent infections instead see plasma proteins as foreign bodies, leading to a high risk of blood clotting. It is believed that 2% of the population suffer from this disease. The test is 98% accurate if a person actually has the disease. The test is 74% accurate if a person does not have the disease. There is a line from the Fox television show *House* that is often used after a patient tests positive for lupus: “It’s never lupus.” Do you think there is truth to this statement? Use appropriate probabilities to support your answer.

3.22 **Exit poll.** Edison Research gathered exit poll results from several sources for the Wisconsin recall election of Scott Walker. They found that 53% of the respondents voted in favor of Scott Walker. Additionally, they estimated that of those who did vote in favor for Scott Walker, 37% had a college degree, while 44% of those who voted against Scott Walker had a college degree. Suppose we randomly sampled a person who participated in the exit poll and found that he had a college degree. What is the probability that he voted in favor of Scott Walker?\(^{13}\)

\(^{13}\)New York Times, Wisconsin recall exit polls.
3.3 Sampling from a small population

When we sample observations from a population, usually we’re only sampling a small fraction of the possible individuals or cases. However, sometimes our sample size is large enough or the population is small enough that we sample more than 10% of a population\(^{44}\) without replacement (meaning we do not have a chance of sampling the same cases twice). Sampling such a notable fraction of a population can be important for how we analyze the sample.

EXAMPLE 3.47

Professors sometimes select a student at random to answer a question. If each student has an equal chance of being selected and there are 15 people in your class, what is the chance that she will pick you for the next question?

If there are 15 people to ask and none are skipping class, then the probability is \(\frac{1}{15}\), or about 0.067.

EXAMPLE 3.48

If the professor asks 3 questions, what is the probability that you will not be selected? Assume that she will not pick the same person twice in a given lecture.

For the first question, she will pick someone else with probability \(\frac{14}{15}\). When she asks the second question, she only has 14 people who have not yet been asked. Thus, if you were not picked on the first question, the probability you are again not picked is \(\frac{13}{14}\). Similarly, the probability you are again not picked on the third question is \(\frac{12}{13}\), and the probability of not being picked for any of the three questions is

\[
P(\text{not picked in 3 questions}) = P(Q_1 = \text{not picked}, Q_2 = \text{not picked}, Q_3 = \text{not picked}).
\]

\[
= \frac{14}{15} \times \frac{13}{14} \times \frac{12}{13} = \frac{12}{15} = 0.80
\]

GUIDED PRACTICE 3.49

What rule permitted us to multiply the probabilities in Example 3.48?\(^{45}\)

\(^{44}\)The 10% guideline is a rule of thumb cutoff for when these considerations become more important.

\(^{45}\)The three probabilities we computed were actually one marginal probability, \(P(Q_1 = \text{not picked})\), and two conditional probabilities:

\[
P(Q_2 = \text{not picked} | Q_1 = \text{not picked})
\]

\[
P(Q_3 = \text{not picked} | Q_1 = \text{not picked}, Q_2 = \text{not picked})
\]

Using the General Multiplication Rule, the product of these three probabilities is the probability of not being picked in 3 questions.
EXAMPLE 3.50
Suppose the professor randomly picks without regard to who she already selected, i.e. students can be picked more than once. What is the probability that you will not be picked for any of the three questions?

Each pick is independent, and the probability of not being picked for any individual question is 14/15. Thus, we can use the Multiplication Rule for independent processes.

\[
P(\text{not picked in 3 questions}) = P(Q_1 = \text{not picked}, Q_2 = \text{not picked}, Q_3 = \text{not picked}) = \frac{14}{15} \times \frac{14}{15} \times \frac{14}{15} = 0.813
\]

You have a slightly higher chance of not being picked compared to when she picked a new person for each question. However, you now may be picked more than once.

GUIDED PRACTICE 3.51
Under the setup of Example 3.50, what is the probability of being picked to answer all three questions?²⁶

If we sample from a small population without replacement, we no longer have independence between our observations. In Example 3.48, the probability of not being picked for the second question was conditioned on the event that you were not picked for the first question. In Example 3.50, the professor sampled her students with replacement: she repeatedly sampled the entire class without regard to who she already picked.

GUIDED PRACTICE 3.52
Your department is holding a raffle. They sell 30 tickets and offer seven prizes. (a) They place the tickets in a hat and draw one for each prize. The tickets are sampled without replacement, i.e. the selected tickets are not placed back in the hat. What is the probability of winning a prize if you buy one ticket? (b) What if the tickets are sampled with replacement?²⁷

GUIDED PRACTICE 3.53
Compare your answers in Guided Practice 3.52. How much influence does the sampling method have on your chances of winning a prize?²⁸

Had we repeated Guided Practice 3.52 with 300 tickets instead of 30, we would have found something interesting: the results would be nearly identical. The probability would be 0.0233 without replacement and 0.0231 with replacement. When the sample size is only a small fraction of the population (under 10%), observations are nearly independent even when sampling without replacement.

²⁶\(P(\text{being picked to answer all three questions}) = \left(\frac{1}{15}\right)^3 = 0.00030.\)

²⁷(a) First determine the probability of not winning. The tickets are sampled without replacement, which means the probability you do not win on the first draw is 29/30, 28/29 for the second, ..., and 23/24 for the seventh. The probability you win no prize is the product of these separate probabilities: 23/30. That is, the probability of winning a prize is \(1 - 23/30 = 7/30 = 0.233.\) (b) When the tickets are sampled with replacement, there are seven independent draws. Again we first find the probability of not winning a prize: \((29/30)^7 = 0.789.\) Thus, the probability of winning (at least) one prize when drawing with replacement is 0.211.

²⁸There is about a 10% larger chance of winning a prize when using sampling without replacement. However, at most one prize may be won under this sampling procedure.
Exercises

3.23 Marbles in an urn. Imagine you have an urn containing 5 red, 3 blue, and 2 orange marbles in it.
(a) What is the probability that the first marble you draw is blue?
(b) Suppose you drew a blue marble in the first draw. If drawing with replacement, what is the probability of drawing a blue marble in the second draw?
(c) Suppose you instead drew an orange marble in the first draw. If drawing with replacement, what is the probability of drawing a blue marble in the second draw?
(d) If drawing with replacement, what is the probability of drawing two blue marbles in a row?
(e) When drawing with replacement, are the draws independent? Explain.

3.24 Socks in a drawer. In your sock drawer you have 4 blue, 5 gray, and 3 black socks. Half asleep one morning you grab 2 socks at random and put them on. Find the probability you end up wearing
(a) 2 blue socks
(b) no gray socks
(c) at least 1 black sock
(d) a green sock
(e) matching socks

3.25 Chips in a bag. Imagine you have a bag containing 5 red, 3 blue, and 2 orange chips.
(a) Suppose you draw a chip and it is blue. If drawing without replacement, what is the probability the next is also blue?
(b) Suppose you draw a chip and it is orange, and then you draw a second chip without replacement. What is the probability this second chip is blue?
(c) If drawing without replacement, what is the probability of drawing two blue chips in a row?
(d) When drawing without replacement, are the draws independent? Explain.

3.26 Books on a bookshelf. The table below shows the distribution of books on a bookcase based on whether they are nonfiction or fiction and hardcover or paperback.

<table>
<thead>
<tr>
<th>Format</th>
<th>Hardcover</th>
<th>Paperback</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiction</td>
<td>13</td>
<td>59</td>
<td>72</td>
</tr>
<tr>
<td>Nonfiction</td>
<td>15</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>67</td>
<td>95</td>
</tr>
</tbody>
</table>

(a) Find the probability of drawing a hardcover book first then a paperback fiction book second when drawing without replacement.
(b) Determine the probability of drawing a fiction book first and then a hardcover book second, when drawing without replacement.
(c) Calculate the probability of the scenario in part (b), except this time complete the calculations under the scenario where the first book is placed back on the bookcase before randomly drawing the second book.
(d) The final answers to parts (b) and (c) are very similar. Explain why this is the case.

3.27 Student outfits. In a classroom with 24 students, 7 students are wearing jeans, 4 are wearing shorts, 8 are wearing skirts, and the rest are wearing leggings. If we randomly select 3 students without replacement, what is the probability that one of the selected students is wearing leggings and the other two are wearing jeans? Note that these are mutually exclusive clothing options.

3.28 The birthday problem. Suppose we pick three people at random. For each of the following questions, ignore the special case where someone might be born on February 29th, and assume that births are evenly distributed throughout the year.
(a) What is the probability that the first two people share a birthday?
(b) What is the probability that at least two people share a birthday?
3.4 Random variables

It’s often useful to model a process using what’s called a random variable. Such a model allows us to apply a mathematical framework and statistical principles for better understanding and predicting outcomes in the real world.

EXAMPLE 3.54

Two books are assigned for a statistics class: a textbook and its corresponding study guide. The university bookstore determined 20% of enrolled students do not buy either book, 55% buy the textbook only, and 25% buy both books, and these percentages are relatively constant from one term to another. If there are 100 students enrolled, how many books should the bookstore expect to sell to this class?

Around 20 students will not buy either book (0 books total), about 55 will buy one book (55 books total), and approximately 25 will buy two books (totaling 50 books for these 25 students). The bookstore should expect to sell about 105 books for this class.

GUIDED PRACTICE 3.55

Would you be surprised if the bookstore sold slightly more or less than 105 books? \(^{49}\)

EXAMPLE 3.56

The textbook costs $137 and the study guide $33. How much revenue should the bookstore expect from this class of 100 students?

About 55 students will just buy a textbook, providing revenue of

\[
$137 \times 55 = $7,535
\]

The roughly 25 students who buy both the textbook and the study guide would pay a total of

\[
(137 + 33) \times 25 = 170 \times 25 = $4,250
\]

Thus, the bookstore should expect to generate about $7,535 + $4,250 = $11,785 from these 100 students for this one class. However, there might be some sampling variability so the actual amount may differ by a little bit.

![Figure 3.18: Probability distribution for the bookstore’s revenue from one student. The triangle represents the average revenue per student.](image)

\(^{49}\)If they sell a little more or a little less, this should not be a surprise. Hopefully Chapter 1 helped make clear that there is natural variability in observed data. For example, if we would flip a coin 100 times, it will not usually come up heads exactly half the time, but it will probably be close.
EXAMPLE 3.57
What is the average revenue per student for this course?

The expected total revenue is $11,785, and there are 100 students. Therefore the expected revenue per student is $11,785/100 = $117.85.

3.4.1 Expectation

We call a variable or process with a numerical outcome a random variable, and we usually represent this random variable with a capital letter such as X, Y, or Z. The amount of money a single student will spend on her statistics books is a random variable, and we represent it by X.

RANDOM VARIABLE
A random process or variable with a numerical outcome.

The possible outcomes of X are labeled with a corresponding lower case letter x and subscripts. For example, we write $x_1 = 0$, $x_2 = 137$, and $x_3 = 170$, which occur with probabilities 0.20, 0.55, and 0.25. The distribution of X is summarized in Figure 3.18 and Figure 3.19.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>137</td>
<td>170</td>
<td>$-$</td>
</tr>
<tr>
<td>$P(X = x_i)$</td>
<td>0.20</td>
<td>0.55</td>
<td>0.25</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 3.19: The probability distribution for the random variable X, representing the bookstore’s revenue from a single student.

We computed the average outcome of X as 117.85 in Example 3.57. We call this average the **expected value** of X, denoted by $E(X)$. The expected value of a random variable is computed by adding each outcome weighted by its probability:

$$E(X) = 0 \times P(X = 0) + 137 \times P(X = 137) + 170 \times P(X = 170)$$
$$= 0 \times 0.20 + 137 \times 0.55 + 170 \times 0.25 = 117.85$$

EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE
If X takes outcomes x_1, ..., x_k with probabilities $P(X = x_1)$, ..., $P(X = x_k)$, the expected value of X is the sum of each outcome multiplied by its corresponding probability:

$$E(X) = x_1 \times P(X = x_1) + \cdots + x_k \times P(X = x_k)$$
$$= \sum_{i=1}^{k} x_i P(X = x_i)$$

The Greek letter μ may be used in place of the notation $E(X)$.
3.4 RANDOM VARIABLES

Figure 3.20: A weight system representing the probability distribution for X. The string holds the distribution at the mean to keep the system balanced.

Figure 3.21: A continuous distribution can also be balanced at its mean.

The expected value for a random variable represents the average outcome. For example, $E(X) = 117.85$ represents the average amount the bookstore expects to make from a single student, which we could also write as $\mu = 117.85$.

It is also possible to compute the expected value of a continuous random variable (see Section 3.5). However, it requires a little calculus and we save it for a later class.\(^5\)

In physics, the expectation holds the same meaning as the center of gravity. The distribution can be represented by a series of weights at each outcome, and the mean represents the balancing point. This is represented in Figures 3.18 and 3.20. The idea of a center of gravity also expands to continuous probability distributions. Figure 3.21 shows a continuous probability distribution balanced atop a wedge placed at the mean.

\(^{50}\mu = \int xf(x)dx\) where $f(x)$ represents a function for the density curve.
3.4.2 Variability in random variables

Suppose you ran the university bookstore. Besides how much revenue you expect to generate, you might also want to know the volatility (variability) in your revenue.

The variance and standard deviation can be used to describe the variability of a random variable. Section 2.1.4 introduced a method for finding the variance and standard deviation for a data set. We first computed deviations from the mean \((x_i - \mu)\), squared those deviations, and took an average to get the variance. In the case of a random variable, we again compute squared deviations. However, we take their sum weighted by their corresponding probabilities, just like we did for the expectation. This weighted sum of squared deviations equals the variance, and we calculate the standard deviation by taking the square root of the variance, just as we did in Section 2.1.4.

GENERAL VARIANCE FORMULA

If \(X\) takes outcomes \(x_1, ..., x_k\) with probabilities \(P(X = x_1), ..., P(X = x_k)\) and expected value \(\mu = E(X)\), then the variance of \(X\), denoted by \(\text{Var}(X)\) or the symbol \(\sigma^2\), is

\[
\sigma^2 = (x_1 - \mu)^2 \times P(X = x_1) + \cdots + (x_k - \mu)^2 \times P(X = x_k)
\]

\[
= \sum_{j=1}^{k} (x_j - \mu)^2 P(X = x_j)
\]

The standard deviation of \(X\), labeled \(\sigma\), is the square root of the variance.

EXAMPLE 3.58

Compute the expected value, variance, and standard deviation of \(X\), the revenue of a single statistics student for the bookstore.

It is useful to construct a table that holds computations for each outcome separately, then add up the results.

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>137</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>(P(X = x_i))</td>
<td>0.20</td>
<td>0.55</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>(x_i \times P(X = x_i))</td>
<td>0</td>
<td>75.35</td>
<td>42.50</td>
<td>117.85</td>
</tr>
</tbody>
</table>

Thus, the expected value is \(\mu = 117.85\), which we computed earlier. The variance can be constructed by extending this table:

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P(X = x_i))</td>
<td>0.20</td>
<td>0.55</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>(x_i \times P(X = x_i))</td>
<td>0</td>
<td>75.35</td>
<td>42.50</td>
<td>117.85</td>
</tr>
<tr>
<td>(x_i - \mu)</td>
<td>-117.85</td>
<td>19.15</td>
<td>52.15</td>
<td></td>
</tr>
<tr>
<td>((x_i - \mu)^2)</td>
<td>13888.62</td>
<td>366.72</td>
<td>2719.62</td>
<td></td>
</tr>
<tr>
<td>((x_i - \mu)^2 \times P(X = x_i))</td>
<td>2777.7</td>
<td>201.7</td>
<td>679.9</td>
<td>3659.3</td>
</tr>
</tbody>
</table>

The variance of \(X\) is \(\sigma^2 = 3659.3\), which means the standard deviation is \(\sigma = \sqrt{3659.3} = \$60.49\).
3.4. RANDOM VARIABLES

GUIDED PRACTICE 3.59
The bookstore also offers a chemistry textbook for $159 and a book supplement for $41. From past experience, they know about 25% of chemistry students just buy the textbook while 60% buy both the textbook and supplement.\(^{51}\)

(a) What proportion of students don’t buy either book? Assume no students buy the supplement without the textbook.

(b) Let \(Y \) represent the revenue from a single student. Write out the probability distribution of \(Y \), i.e. a table for each outcome and its associated probability.

(c) Compute the expected revenue from a single chemistry student.

(d) Find the standard deviation to describe the variability associated with the revenue from a single student.

3.4.3 Linear combinations of random variables

So far, we have thought of each variable as being a complete story in and of itself. Sometimes it is more appropriate to use a combination of variables. For instance, the amount of time a person spends commuting to work each week can be broken down into several daily commutes. Similarly, the total gain or loss in a stock portfolio is the sum of the gains and losses in its components.

EXAMPLE 3.60
John travels to work five days a week. We will use \(X_1 \) to represent his travel time on Monday, \(X_2 \) to represent his travel time on Tuesday, and so on. Write an equation using \(X_1, ..., X_5 \) that represents his travel time for the week, denoted by \(W \).

His total weekly travel time is the sum of the five daily values:

\[W = X_1 + X_2 + X_3 + X_4 + X_5 \]

Breaking the weekly travel time \(W \) into pieces provides a framework for understanding each source of randomness and is useful for modeling \(W \).

\(^{51}\) (a) 100% - 25% - 60% = 15% of students do not buy any books for the class. Part (b) is represented by the first two lines in the table below. The expectation for part (c) is given as the total on the line \(y_i \times P(Y = y_i) \). The result of part (d) is the square-root of the variance listed on in the total on the last line: \(\sigma = \sqrt{Var(Y)} = 69.28 \).
EXAMPLE 3.61
It takes John an average of 18 minutes each day to commute to work. What would you expect his average commute time to be for the week?

We were told that the average (i.e. expected value) of the commute time is 18 minutes per day:
\[E(X) = 18 \]. To get the expected time for the sum of the five days, we can add up the expected time for each individual day:

\[
E(W) = E(X_1 + X_2 + X_3 + X_4 + X_5) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5) = 18 + 18 + 18 + 18 + 18 = 90 \text{ minutes}
\]

The expectation of the total time is equal to the sum of the expected individual times. More generally, the expectation of a sum of random variables is always the sum of the expectation for each random variable.

GUIDED PRACTICE 3.62
Elena is selling a TV at a cash auction and also intends to buy a toaster oven in the auction. If \(X \) represents the profit for selling the TV and \(Y \) represents the cost of the toaster oven, write an equation that represents the net change in Elena’s cash.\(^{52}\)

GUIDED PRACTICE 3.63
Based on past auctions, Elena figures she should expect to make about \$175 on the TV and pay about \$23 for the toaster oven. In total, how much should she expect to make or spend?\(^{53}\)

GUIDED PRACTICE 3.64
Would you be surprised if John’s weekly commute wasn’t exactly 90 minutes or if Elena didn’t make exactly \$152? Explain.\(^{54}\)

Two important concepts concerning combinations of random variables have so far been introduced. First, a final value can sometimes be described as the sum of its parts in an equation. Second, intuition suggests that putting the individual average values into this equation gives the average value we would expect in total. This second point needs clarification – it is guaranteed to be true in what are called linear combinations of random variables.

A linear combination of two random variables \(X \) and \(Y \) is a fancy phrase to describe a combination

\[aX + bY \]

where \(a \) and \(b \) are some fixed and known numbers. For John’s commute time, there were five random variables – one for each work day – and each random variable could be written as having a fixed coefficient of 1:

\[1X_1 + 1X_2 + 1X_3 + 1X_4 + 1X_5 \]

For Elena’s net gain or loss, the \(X \) random variable had a coefficient of +1 and the \(Y \) random variable had a coefficient of -1.

\(^{52}\)She will make \(X \) dollars on the TV but spend \(Y \) dollars on the toaster oven: \(X - Y \).

\(^{53}\)\(E(X - Y) = E(X) - E(Y) = 175 - 23 = \$152 \). She should expect to make about \$152.

\(^{54}\)No, since there is probably some variability. For example, the traffic will vary from one day to next, and auction prices will vary depending on the quality of the merchandise and the interest of the attendees.
When considering the average of a linear combination of random variables, it is safe to plug in the mean of each random variable and then compute the final result. For a few examples of nonlinear combinations of random variables – cases where we cannot simply plug in the means – see the footnote.\(^{55}\)

LINEAR COMBINATIONS OF RANDOM VARIABLES AND THE AVERAGE RESULT

If \(X\) and \(Y\) are random variables, then a linear combination of the random variables is given by

\[
aX + bY
\]

where \(a\) and \(b\) are some fixed numbers. To compute the average value of a linear combination of random variables, plug in the average of each individual random variable and compute the result:

\[
a \times E(X) + b \times E(Y)
\]

Recall that the expected value is the same as the mean, e.g. \(E(X) = \mu_X\).

EXAMPLE 3.65

Leonard has invested $6000 in Caterpillar Inc (stock ticker: CAT) and $2000 in Exxon Mobil Corp (XOM). If \(X\) represents the change in Caterpillar’s stock next month and \(Y\) represents the change in Exxon Mobil’s stock next month, write an equation that describes how much money will be made or lost in Leonard’s stocks for the month.

For simplicity, we will suppose \(X\) and \(Y\) are not in percents but are in decimal form (e.g. if Caterpillar’s stock increases 1%, then \(X = 0.01\); or if it loses 1%, then \(X = -0.01\)). Then we can write an equation for Leonard’s gain as

\[
$6000 \times X + $2000 \times Y
\]

If we plug in the change in the stock value for \(X\) and \(Y\), this equation gives the change in value of Leonard’s stock portfolio for the month. A positive value represents a gain, and a negative value represents a loss.

GUIDED PRACTICE 3.66

Caterpillar stock has recently been rising at 2.0\% and Exxon Mobil’s at 0.2\% per month, respectively. Compute the expected change in Leonard’s stock portfolio for next month.\(^{56}\)

GUIDED PRACTICE 3.67

You should have found that Leonard expects a positive gain in Guided Practice 3.66. However, would you be surprised if he actually had a loss this month?\(^{57}\)

\(^{55}\)If \(X\) and \(Y\) are random variables, consider the following combinations: \(X^{1 + Y}\), \(X \times Y\), \(X/Y\). In such cases, plugging in the average value for each random variable and computing the result will not generally lead to an accurate average value for the end result.

\(^{56}\)\(E($6000 \times X + $2000 \times Y$) = $6000 \times 0.020 + $2000 \times 0.002 = $124\).

\(^{57}\)No. While stocks tend to rise over time, they are often volatile in the short term.
3.4.4 Variability in linear combinations of random variables

Quantifying the average outcome from a linear combination of random variables is helpful, but it is also important to have some sense of the uncertainty associated with the total outcome of that combination of random variables. The expected net gain or loss of Leonard’s stock portfolio was considered in Guided Practice 3.66. However, there was no quantitative discussion of the volatility of this portfolio. For instance, while the average monthly gain might be about $124 according to the data, that gain is not guaranteed. Figure 3.22 shows the monthly changes in a portfolio like Leonard’s during a three year period. The gains and losses vary widely, and quantifying these fluctuations is important when investing in stocks.

![Monthly Returns Over 3 Years](image)

Figure 3.22: The change in a portfolio like Leonard’s for 36 months, where $6000 is in Caterpillar’s stock and $2000 is in Exxon Mobil’s.

Just as we have done in many previous cases, we use the variance and standard deviation to describe the uncertainty associated with Leonard’s monthly returns. To do so, the variances of each stock’s monthly return will be useful, and these are shown in Figure 3.23. The stocks’ returns are nearly independent.

Here we use an equation from probability theory to describe the uncertainty of Leonard’s monthly returns; we leave the proof of this method to a dedicated probability course. The variance of a linear combination of random variables can be computed by plugging in the variances of the individual random variables and squaring the coefficients of the random variables:

\[
Var(aX + bY) = a^2 \times Var(X) + b^2 \times Var(Y)
\]

It is important to note that this equality assumes the random variables are independent; if independence doesn’t hold, then a modification to this equation would be required that we leave as a topic for a future course to cover. This equation can be used to compute the variance of Leonard’s monthly return:

\[
Var(6000X + 2000Y) = 6000^2 \times Var(X) + 2000^2 \times Var(Y)
\]

\[
= 36,000,000 \times 0.0057 + 4,000,000 \times 0.0021
\]

\[
= 213,600
\]

The standard deviation is computed as the square root of the variance: \(\sqrt{213,600} = 463\). While an average monthly return of $124 on an $8000 investment is nothing to scoff at, the monthly returns are so volatile that Leonard should not expect this income to be very stable.

<table>
<thead>
<tr>
<th></th>
<th>Mean ((\bar{x}))</th>
<th>Standard deviation (s)</th>
<th>Variance (s^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT</td>
<td>0.0204</td>
<td>0.0757</td>
<td>0.0057</td>
</tr>
<tr>
<td>XOM</td>
<td>0.0025</td>
<td>0.0455</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

Figure 3.23: The mean, standard deviation, and variance of the CAT and XOM stocks. These statistics were estimated from historical stock data, so notation used for sample statistics has been used.
3.4. RANDOM VARIABLES

VARIABILITY OF LINEAR COMBINATIONS OF RANDOM VARIABLES

The variance of a linear combination of random variables may be computed by squaring the constants, substituting in the variances for the random variables, and computing the result:

\[\text{Var}(aX + bY) = a^2 \times \text{Var}(X) + b^2 \times \text{Var}(Y) \]

This equation is valid as long as the random variables are independent of each other. The standard deviation of the linear combination may be found by taking the square root of the variance.

EXAMPLE 3.68

Suppose John’s daily commute has a standard deviation of 4 minutes. What is the uncertainty in his total commute time for the week?

The expression for John’s commute time was

\[X_1 + X_2 + X_3 + X_4 + X_5 \]

Each coefficient is 1, and the variance of each day’s time is \(4^2 = 16\). Thus, the variance of the total weekly commute time is

\[
\text{variance} = 1^2 \times 16 + 1^2 \times 16 + 1^2 \times 16 + 1^2 \times 16 + 1^2 \times 16 = 5 \times 16 = 80
\]

\[
\text{standard deviation} = \sqrt{\text{variance}} = \sqrt{80} \approx 8.94
\]

The standard deviation for John’s weekly work commute time is about 9 minutes.

GUIDED PRACTICE 3.69

The computation in Example 3.68 relied on an important assumption: the commute time for each day is independent of the time on other days of that week. Do you think this is valid? Explain.\(^{58}\)

GUIDED PRACTICE 3.70

Consider Elena’s two auctions from Guided Practice 3.62 on page 120. Suppose these auctions are approximately independent and the variability in auction prices associated with the TV and toaster oven can be described using standard deviations of $25 and $8. Compute the standard deviation of Elena’s net gain.\(^{59}\)

Consider again Guided Practice 3.70. The negative coefficient for \(Y\) in the linear combination was eliminated when we squared the coefficients. This generally holds true: negatives in a linear combination will have no impact on the variability computed for a linear combination, but they do impact the expected value computations.

\(^{58}\)One concern is whether traffic patterns tend to have a weekly cycle (e.g. Fridays may be worse than other days). If that is the case, and John drives, then the assumption is probably not reasonable. However, if John walks to work, then his commute is probably not affected by any weekly traffic cycle.

\(^{59}\)The equation for Elena can be written as

\[(1) \times X + (-1) \times Y \]

The variances of \(X\) and \(Y\) are 625 and 64. We square the coefficients and plug in the variances:

\[
(1)^2 \times \text{Var}(X) + (-1)^2 \times \text{Var}(Y) = 1 \times 625 + 1 \times 64 = 689
\]

The variance of the linear combination is 689, and the standard deviation is the square root of 689: about $26.25.
Exercises

3.29 College smokers. At a university, 13% of students smoke.
(a) Calculate the expected number of smokers in a random sample of 100 students from this university.
(b) The university gym opens at 9 am on Saturday mornings. One Saturday morning at 8:55 am there are 27 students outside the gym waiting for it to open. Should you use the same approach from part (a) to calculate the expected number of smokers among these 27 students?

3.30 Ace of clubs wins. Consider the following card game with a well-shuffled deck of cards. If you draw a red card, you win nothing. If you get a spade, you win $5. For any club, you win $10 plus an extra $20 for the ace of clubs.
(a) Create a probability model for the amount you win at this game. Also, find the expected winnings for a single game and the standard deviation of the winnings.
(b) What is the maximum amount you would be willing to pay to play this game? Explain your reasoning.

3.31 Hearts win. In a new card game, you start with a well-shuffled full deck and draw 3 cards without replacement. If you draw 3 hearts, you win $50. If you draw 3 black cards, you win $25. For any other draws, you win nothing.
(a) Create a probability model for the amount you win at this game, and find the expected winnings. Also compute the standard deviation of this distribution.
(b) If the game costs $5 to play, what would be the expected value and standard deviation of the net profit (or loss)? (Hint: \(\text{profit} = \text{winnings} - \text{cost}; X - 5 \))
(c) If the game costs $5 to play, should you play this game? Explain.

3.32 Is it worth it? Andy is always looking for ways to make money fast. Lately, he has been trying to make money by gambling. Here is the game he is considering playing: The game costs $2 to play. He draws a card from a deck. If he gets a number card (2-10), he wins nothing. For any face card (jack, queen, or king), he wins $3. For any ace, he wins $5, and he wins an extra $20 if he draws the ace of clubs.
(a) Create a probability model and find Andy’s expected profit per game.
(b) Would you recommend this game to Andy as a good way to make money? Explain.

3.33 Portfolio return. A portfolio’s value increases by 18% during a financial boom and by 9% during normal times. It decreases by 12% during a recession. What is the expected return on this portfolio if each scenario is equally likely?

3.34 Baggage fees. An airline charges the following baggage fees: $25 for the first bag and $35 for the second. Suppose 54% of passengers have no checked luggage, 34% have one piece of checked luggage and 12% have two pieces. We suppose a negligible portion of people check more than two bags.
(a) Build a probability model, compute the average revenue per passenger, and compute the corresponding standard deviation.
(b) About how much revenue should the airline expect for a flight of 120 passengers? With what standard deviation? Note any assumptions you make and if you think they are justified.

3.35 American roulette. The game of American roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their color, they double their money. If it lands on another color, they lose their money. Suppose you bet $1 on red. What’s the expected value and standard deviation of your winnings?

3.36 European roulette. The game of European roulette involves spinning a wheel with 37 slots: 18 red, 18 black, and 1 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their color, they double their money. If it lands on another color, they lose their money.
(a) Suppose you play roulette and bet $3 on a single round. What is the expected value and standard deviation of your total winnings?
(b) Suppose you bet $1 in three different rounds. What is the expected value and standard deviation of your total winnings?
(c) How do your answers to parts (a) and (b) compare? What does this say about the riskiness of the two games?
3.5 Continuous distributions

So far in this chapter we’ve discussed cases where the outcome of a variable is discrete. In this section, we consider a context where the outcome is a continuous numerical variable.

EXAMPLE 3.71

Figure 3.24 shows a few different hollow histograms for the heights of US adults. How does changing the number of bins allow you to make different interpretations of the data?

Adding more bins provides greater detail. This sample is extremely large, which is why much smaller bins still work well. Usually we do not use so many bins with smaller sample sizes since small counts per bin mean the bin heights are very volatile.

![Figure 3.24: Four hollow histograms of US adults heights with varying bin widths.](image)

EXAMPLE 3.72

What proportion of the sample is between 180 cm and 185 cm tall (about 5’11” to 6’1”)?

We can add up the heights of the bins in the range 180 cm and 185 and divide by the sample size. For instance, this can be done with the two shaded bins shown in Figure 3.25. The two bins in this region have counts of 195,307 and 156,239 people, resulting in the following estimate of the probability:

\[
\frac{195307 + 156239}{3,000,000} = 0.1172
\]

This fraction is the same as the proportion of the histogram’s area that falls in the range 180 to 185 cm.
3.5.1 From histograms to continuous distributions

Examine the transition from a boxy hollow histogram in the top-left of Figure 3.24 to the much smoother plot in the lower-right. In this last plot, the bins are so slim that the hollow histogram is starting to resemble a smooth curve. This suggests the population height as a continuous numerical variable might best be explained by a curve that represents the outline of extremely slim bins.

This smooth curve represents a probability density function (also called a density or distribution), and such a curve is shown in Figure 3.26 overlaid on a histogram of the sample. A density has a special property: the total area under the density’s curve is 1.
3.5.2 Probabilities from continuous distributions

We computed the proportion of individuals with heights 180 to 185 cm in Example 3.72 as a fraction:

\[
\frac{\text{number of people between 180 and 185}}{\text{total sample size}}
\]

We found the number of people with heights between 180 and 185 cm by determining the fraction of the histogram’s area in this region. Similarly, we can use the area in the shaded region under the curve to find a probability (with the help of a computer):

\[
P(\text{height between 180 and 185}) = \text{area between 180 and 185} = 0.1157
\]

The probability that a randomly selected person is between 180 and 185 cm is 0.1157. This is very close to the estimate from Example 3.72: 0.1172.

![Figure 3.27: Density for heights in the US adult population with the area between 180 and 185 cm shaded. Compare this plot with Figure 3.25.](image)

GUIDED PRACTICE 3.73

Three US adults are randomly selected. The probability a single adult is between 180 and 185 cm is 0.1157.\(^{60}\)

(a) What is the probability that all three are between 180 and 185 cm tall?

(b) What is the probability that none are between 180 and 185 cm?

EXAMPLE 3.74

What is the probability that a randomly selected person is exactly 180 cm? Assume you can measure perfectly.

This probability is zero. A person might be close to 180 cm, but not exactly 180 cm tall. This also makes sense with the definition of probability as area; there is no area captured between 180 cm and 180 cm.

GUIDED PRACTICE 3.75

Suppose a person’s height is rounded to the nearest centimeter. Is there a chance that a random person’s measured height will be 180 cm?\(^{61}\)

\(^{60}\) Brief answers: (a) \(0.1157 \times 0.1157 \times 0.1157 = 0.0015\). (b) \((1 - 0.1157)^3 = 0.692\)

\(^{61}\) This has positive probability. Anyone between 179.5 cm and 180.5 cm will have a measured height of 180 cm. This is probably a more realistic scenario to encounter in practice versus Example 3.74.
Exercises

3.37 Cat weights. The histogram shown below represents the weights (in kg) of 47 female and 97 male cats.\(^{62}\)

(a) What fraction of these cats weigh less than 2.5 kg?
(b) What fraction of these cats weigh between 2.5 and 2.75 kg?
(c) What fraction of these cats weigh between 2.75 and 3.5 kg?

3.38 Income and gender. The relative frequency table below displays the distribution of annual total personal income (in 2009 inflation-adjusted dollars) for a representative sample of 96,420,486 Americans. These data come from the American Community Survey for 2005-2009. This sample is comprised of 59% males and 41% females.\(^{63}\)

(a) Describe the distribution of total personal income.
(b) What is the probability that a randomly chosen US resident makes less than $50,000 per year?
(c) What is the probability that a randomly chosen US resident makes less than $50,000 per year and is female? Note any assumptions you make.
(d) The same data source indicates that 71.8% of females make less than $50,000 per year. Use this value to determine whether or not the assumption you made in part (c) is valid.

<table>
<thead>
<tr>
<th>Income</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 to $9,999 or less</td>
<td>2.2%</td>
</tr>
<tr>
<td>$10,000 to $14,999</td>
<td>4.7%</td>
</tr>
<tr>
<td>$15,000 to $24,999</td>
<td>15.8%</td>
</tr>
<tr>
<td>$25,000 to $34,999</td>
<td>18.3%</td>
</tr>
<tr>
<td>$35,000 to $49,999</td>
<td>21.2%</td>
</tr>
<tr>
<td>$50,000 to $64,999</td>
<td>13.9%</td>
</tr>
<tr>
<td>$65,000 to $74,999</td>
<td>5.8%</td>
</tr>
<tr>
<td>$75,000 to $99,999</td>
<td>8.4%</td>
</tr>
<tr>
<td>$100,000 or more</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

\(^{63}\)U.S. Census Bureau, 2005-2009 American Community Survey.
Chapter exercises

3.39 Grade distributions. Each row in the table below is a proposed grade distribution for a class. Identify each as a valid or invalid probability distribution, and explain your reasoning.

<table>
<thead>
<tr>
<th>Grades</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>(a)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(d)</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>(e)</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(f)</td>
<td>0</td>
<td>-0.1</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.40 Health coverage, frequencies. The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone survey designed to identify risk factors in the adult population and report emerging health trends. The following table summarizes two variables for the respondents: health status and health coverage, which describes whether each respondent had health insurance.64

<table>
<thead>
<tr>
<th>Health Status</th>
<th>Excellent</th>
<th>Very good</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>No</td>
<td>459</td>
<td>727</td>
<td>854</td>
<td>385</td>
<td>99</td>
</tr>
<tr>
<td>Coverage</td>
<td>Yes</td>
<td>4,198</td>
<td>6,245</td>
<td>4,821</td>
<td>1,634</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4,657</td>
<td>6,972</td>
<td>5,675</td>
<td>2,019</td>
<td>677</td>
</tr>
</tbody>
</table>

(a) If we draw one individual at random, what is the probability that the respondent has excellent health and doesn’t have health coverage?
(b) If we draw one individual at random, what is the probability that the respondent has excellent health or doesn’t have health coverage?

3.41 HIV in Swaziland. Swaziland has the highest HIV prevalence in the world: 25.9% of this country’s population is infected with HIV.65 The ELISA test is one of the first and most accurate tests for HIV. For those who carry HIV, the ELISA test is 99.7% accurate. For those who do not carry HIV, the test is 92.6% accurate. If an individual from Swaziland has tested positive, what is the probability that he carries HIV?

3.42 Twins. About 30% of human twins are identical, and the rest are fraternal. Identical twins are necessarily the same sex – half are males and the other half are females. One-quarter of fraternal twins are both male, one-quarter both female, and one-half are mixes: one male, one female. You have just become a parent of twins and are told they are both girls. Given this information, what is the probability that they are identical?

3.43 Cost of breakfast. Sally gets a cup of coffee and a muffin every day for breakfast from one of the many coffee shops in her neighborhood. She picks a coffee shop each morning at random and independently of previous days. The average price of a cup of coffee is $1.40 with a standard deviation of 30¢ ($0.30), the average price of a muffin is $2.50 with a standard deviation of 15¢, and the two prices are independent of each other.

(a) What is the mean and standard deviation of the amount she spends on breakfast daily?
(b) What is the mean and standard deviation of the amount she spends on breakfast weekly (7 days)?

64Office of Surveillance, Epidemiology, and Laboratory Services Behavioral Risk Factor Surveillance System, BRFSS 2010 Survey Data.
3.44 **Scooping ice cream.** Ice cream usually comes in 1.5 quart boxes (48 fluid ounces), and ice cream scoops hold about 2 ounces. However, there is some variability in the amount of ice cream in a box as well as the amount of ice cream scooped out. We represent the amount of ice cream in the box as X and the amount scooped out as Y. Suppose these random variables have the following means, standard deviations, and variances:

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>SD</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>48</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>0.25</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

(a) An entire box of ice cream, plus 3 scoops from a second box is served at a party. How much ice cream do you expect to have been served at this party? What is the standard deviation of the amount of ice cream served?

(b) How much ice cream would you expect to be left in the box after scooping out one scoop of ice cream? That is, find the expected value of $X - Y$. What is the standard deviation of the amount left in the box?

(c) Using the context of this exercise, explain why we add variances when we subtract one random variable from another.

3.45 **Variance of a mean, Part I.** Suppose we have independent observations X_1 and X_2 from a distribution with mean μ and standard deviation σ. What is the variance of the mean of the two values: $\frac{X_1 + X_2}{2}$?

3.46 **Variance of a mean, Part II.** Suppose we have 3 independent observations X_1, X_2, X_3 from a distribution with mean μ and standard deviation σ. What is the variance of the mean of these 3 values: $\frac{X_1 + X_2 + X_3}{3}$?

3.47 **Variance of a mean, Part III.** Suppose we have n independent observations X_1, X_2, ..., X_n from a distribution with mean μ and standard deviation σ. What is the variance of the mean of these n values: $\frac{X_1 + X_2 + ... + X_n}{n}$?