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Variability in estimates

Margin of error

41% ± 2.9%: We are 95% confident that 38.1% to 43.9% of the
public believe young adults, rather than middle-aged or older
adults, are having the toughest time in today’s economy.
49% ± 4.4%: We are 95% confident that 44.6% to 53.4% of
18-34 years olds have taken a job they didn’t want just to pay the
bills.
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Variability in estimates

Parameter estimation

We are often interested in population parameters.
Since complete populations are difficult (or impossible) to collect
data on, we use sample statistics as point estimates for the
unknown population parameters of interest.
Sample statistics vary from sample to sample.
Quantifying how sample statistics vary provides a way to
estimate the margin of error associated with our point estimate.
But before we get to quantifying the variability among samples,
let’s try to understand how and why point estimates vary from
sample to sample.

Suppose we randomly sample 1,000 adults from each state in the US.
Would you expect the sample means of their heights to be the same,
somewhat different, or very different?

Not the same, but only somewhat different.
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Variability in estimates Application exercise

The following histogram shows the distribution of number of drinks it
takes a group of college students to get drunk. We will assume that
this is our population of interest. If we randomly select observations
from this data set, which values are most likely to be selected, which
are least likely?

Number of drinks to get drunk
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Variability in estimates Application exercise

Suppose that you don’t have access to the population data. In order to
estimate the average number of drinks it takes these college students
to get drunk, you might sample from the population and use your sam-
ple mean as the best guess for the unknown population mean.

Sample, with replacement, ten students from the population, and
record the number of drinks it takes them to get drunk.

Find the sample mean.

Plot the distribution of the sample averages obtained by
members of the class.

1 7 16 3 31 5 46 4 61 10 76 6 91 4 106 6 121 6 136 6
2 5 17 10 32 9 47 3 62 7 77 6 92 0.5 107 2 122 5 137 7
3 4 18 8 33 7 48 3 63 4 78 5 93 3 108 5 123 3 138 3
4 4 19 5 34 5 49 6 64 5 79 4 94 3 109 1 124 2 139 10
5 6 20 10 35 5 50 8 65 6 80 5 95 5 110 5 125 2 140 4
6 2 21 6 36 7 51 8 66 6 81 6 96 6 111 5 126 5 141 4
7 3 22 2 37 4 52 8 67 6 82 5 97 4 112 4 127 10 142 6
8 5 23 6 38 0 53 2 68 7 83 6 98 4 113 4 128 4 143 6
9 5 24 7 39 4 54 4 69 7 84 8 99 2 114 9 129 1 144 4
10 6 25 3 40 3 55 8 70 5 85 4 100 5 115 4 130 4 145 5
11 1 26 6 41 6 56 3 71 10 86 10 101 4 116 3 131 10 146 5
12 10 27 5 42 10 57 5 72 3 87 5 102 7 117 3 132 8
13 4 28 8 43 3 58 5 73 5.5 88 10 103 6 118 4 133 10
14 4 29 0 44 6 59 8 74 7 89 8 104 8 119 4 134 6
15 6 30 8 45 10 60 4 75 10 90 5 105 3 120 8 135 6

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 6 / 69



Variability in estimates Application exercise

Example:

List of random numbers: 59, 121, 88, 46, 58, 72, 82, 81, 5, 10

1 7 16 3 31 5 46 4 61 10 76 6 91 4 106 6 121 6 136 6
2 5 17 10 32 9 47 3 62 7 77 6 92 0.5 107 2 122 5 137 7
3 4 18 8 33 7 48 3 63 4 78 5 93 3 108 5 123 3 138 3
4 4 19 5 34 5 49 6 64 5 79 4 94 3 109 1 124 2 139 10
5 6 20 10 35 5 50 8 65 6 80 5 95 5 110 5 125 2 140 4
6 2 21 6 36 7 51 8 66 6 81 6 96 6 111 5 126 5 141 4
7 3 22 2 37 4 52 8 67 6 82 5 97 4 112 4 127 10 142 6
8 5 23 6 38 0 53 2 68 7 83 6 98 4 113 4 128 4 143 6
9 5 24 7 39 4 54 4 69 7 84 8 99 2 114 9 129 1 144 4
10 6 25 3 40 3 55 8 70 5 85 4 100 5 115 4 130 4 145 5
11 1 26 6 41 6 56 3 71 10 86 10 101 4 116 3 131 10 146 5
12 10 27 5 42 10 57 5 72 3 87 5 102 7 117 3 132 8
13 4 28 8 43 3 58 5 73 5.5 88 10 103 6 118 4 133 10
14 4 29 0 44 6 59 8 74 7 89 8 104 8 119 4 134 6
15 6 30 8 45 10 60 4 75 10 90 5 105 3 120 8 135 6

Sample mean: (8+6+10+4+5+3+5+6+6+6) / 10 = 5.9
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Variability in estimates Application exercise

Sampling distribution

What you just constructed is called a sampling distribution.

What is the shape and center of this distribution? Based on this distri-
bution, what do you think is the true population average?
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Variability in estimates Application exercise

Sampling distribution

What you just constructed is called a sampling distribution.

What is the shape and center of this distribution? Based on this distri-
bution, what do you think is the true population average?

Approximately 5.39, the true population mean.
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Variability in estimates Sampling distributions - via CLT

Central limit theorem

Central limit theorem

The distribution of the sample mean is well approximated by a normal
model:

x̄ ∼ N
(
mean = µ, SE =

σ
√

n

)
,

where SE is represents standard error, which is defined as the
standard deviation of the sampling distribution. If σ is unknown, use s.

It wasn’t a coincidence that the sampling distribution we saw
earlier was symmetric, and centered at the true population mean.
We won’t go through a detailed proof of why SE = σ√

n
, but note

that as n increases SE decreases.
As the sample size increases we would expect samples to yield
more consistent sample means, hence the variability among the
sample means would be lower.
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Variability in estimates Sampling distributions - via CLT

CLT - conditions

Certain conditions must be met for the CLT to apply:

1. Independence: Sampled observations must be independent.
This is difficult to verify, but is more likely if

random sampling/assignment is used, and
if sampling without replacement, n < 10% of the population.

2. Sample size/skew: Either the population distribution is normal, or
if the population distribution is skewed, the sample size is large.

the more skewed the population distribution, the larger sample
size we need for the CLT to apply
for moderately skewed distributions n > 30 is a widely used rule of
thumb

This is also difficult to verify for the population, but we can check
it using the sample data, and assume that the sample mirrors the
population.
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Confidence intervals Why do we report confidence intervals?

Confidence intervals

A plausible range of values for the population parameter is called
a confidence interval.
Using only a sample statistic to estimate a parameter is like
fishing in a murky lake with a spear, and using a confidence
interval is like fishing with a net.

We can throw a spear where we saw
a fish but we will probably miss. If we
toss a net in that area, we have a
good chance of catching the fish.

If we report a point estimate, we probably won’t hit the exact
population parameter. If we report a range of plausible values we
have a good shot at capturing the parameter.

Photos by Mark Fischer (http://www.flickr.com/photos/fischerfotos/7439791462) and Chris Penny

(http://www.flickr.com/photos/clearlydived/7029109617) on Flickr.
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Confidence intervals Constructing a confidence interval

Average number of exclusive relationships

A random sample of 50 college students were asked how many ex-
clusive relationships they have been in so far. This sample yielded a
mean of 3.2 and a standard deviation of 1.74. Estimate the true aver-
age number of exclusive relationships using this sample.

x̄ = 3.2 s = 1.74

The approximate 95% confidence interval is defined as

point estimate ± 2 × SE

SE =
s
√

n
=

1.74
√

50
≈ 0.25

x̄ ± 2 × SE = 3.2 ± 2 × 0.25

= (3.2 − 0.5, 3.2 + 0.5)

= (2.7, 3.7)
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Confidence intervals Constructing a confidence interval

Which of the following is the correct interpretation of this confidence
interval?

We are 95% confident that

(a) the average number of exclusive relationships college students in
this sample have been in is between 2.7 and 3.7.

(b) college students on average have been in between 2.7 and 3.7
exclusive relationships.

(c) a randomly chosen college student has been in 2.7 to 3.7
exclusive relationships.

(d) 95% of college students have been in 2.7 to 3.7 exclusive
relationships.
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Confidence intervals A more accurate interval

A more accurate interval

Confidence interval, a general formula

point estimate ± z? × SE

Conditions when the point estimate = x̄:
1. Independence: Observations in the sample must be independent

random sample/assignment
if sampling without replacement, n < 10% of population

2. Sample size / skew: n ≥ 30 and population distribution should
not be extremely skewed

Note: We will discuss working with samples where n < 30 in the next
chapter.
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Confidence intervals Capturing the population parameter

What does 95% confident mean?

Suppose we took many samples and built a confidence interval
from each sample using the equation point estimate ± 2 × SE.

Then about 95% of those intervals would contain the true
population mean (µ).

The figure shows this process
with 25 samples, where 24 of
the resulting confidence
intervals contain the true
average number of exclusive
relationships, and one does
not. ●
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Confidence intervals Capturing the population parameter

Width of an interval

If we want to be more certain that we capture the population parameter,
i.e. increase our confidence level, should we use a wider interval or a
smaller interval?

A wider interval.

Can you see any drawbacks to using a wider interval?

If the interval is too wide it may not be very informative.
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Confidence intervals Changing the confidence level

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 17 / 69



Confidence intervals Changing the confidence level

Image source: http://web.as.uky.edu/statistics/users/earo227/misc/garfield weather.gif

Changing the confidence level

point estimate ± z? × SE

In a confidence interval, z? × SE is called the margin of error, and
for a given sample, the margin of error changes as the
confidence level changes.

In order to change the confidence level we need to adjust z? in
the above formula.

Commonly used confidence levels in practice are 90%, 95%,
98%, and 99%.

For a 95% confidence interval, z? = 1.96.

However, using the standard normal (z) distribution, it is possible
to find the appropriate z? for any confidence level.
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Confidence intervals Changing the confidence level

Which of the below Z scores is the appropriate z? when calculating a
98% confidence interval?

(a) Z = 2.05

(b) Z = 1.96

(c) Z = 2.33

(d) Z = −2.33

(e) Z = −1.65
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Hypothesis testing

1 Variability in estimates

2 Confidence intervals

3 Hypothesis testing
Hypothesis testing framework
Testing hypotheses using confidence intervals
Conditions for inference
Formal testing using p-values
Two-sided hypothesis testing with p-values
Decision errors
Choosing a significance level
Recap

4 Examining the Central Limit Theorem

5 Inference for other estimators

6 Sample size and power

7 Statistical vs. practical significance

OpenIntro Statistics, 2nd Edition

Chp 4: Foundations for inference



Hypothesis testing Hypothesis testing framework

Remember when...

Gender discrimination experiment:
Promotion

Promoted Not Promoted Total

Gender
Male 21 3 24
Female 14 10 24
Total 35 13 48

p̂males = 21/24 ≈ 0.88

p̂females = 14/24 ≈ 0.58

Possible explanations:
Promotion and gender are independent, no gender
discrimination, observed difference in proportions is simply due
to chance. → null - (nothing is going on)
Promotion and gender are dependent, there is gender
discrimination, observed difference in proportions is not due to
chance. → alternative - (something is going on)
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Hypothesis testing Hypothesis testing framework

Result

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Difference in promotion rates

−0.4 −0.2 0 0.2 0.4

Since it was quite unlikely to obtain results like the actual data or
something more extreme in the simulations (male promotions being
30% or more higher than female promotions), we decided to reject the
null hypothesis in favor of the alternative.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 20 / 69
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Difference in promotion rates

−0.4 −0.2 0 0.2 0.4

Since it was quite unlikely to obtain results like the actual data or
something more extreme in the simulations (male promotions being
30% or more higher than female promotions), we decided to reject the
null hypothesis in favor of the alternative.
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Hypothesis testing Hypothesis testing framework

Recap: hypothesis testing framework

We start with a null hypothesis (H0) that represents the status
quo.

We also have an alternative hypothesis (HA) that represents our
research question, i.e. what we’re testing for.

We conduct a hypothesis test under the assumption that the null
hypothesis is true, either via simulation or traditional methods
based on the central limit theorem (coming up next...).

If the test results suggest that the data do not provide convincing
evidence for the alternative hypothesis, we stick with the null
hypothesis. If they do, then we reject the null hypothesis in favor
of the alternative.

We’ll formally introduce the hypothesis testing framework using an
example on testing a claim about a population mean.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 21 / 69



Hypothesis testing Hypothesis testing framework

Recap: hypothesis testing framework

We start with a null hypothesis (H0) that represents the status
quo.

We also have an alternative hypothesis (HA) that represents our
research question, i.e. what we’re testing for.

We conduct a hypothesis test under the assumption that the null
hypothesis is true, either via simulation or traditional methods
based on the central limit theorem (coming up next...).

If the test results suggest that the data do not provide convincing
evidence for the alternative hypothesis, we stick with the null
hypothesis. If they do, then we reject the null hypothesis in favor
of the alternative.

We’ll formally introduce the hypothesis testing framework using an
example on testing a claim about a population mean.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 21 / 69



Hypothesis testing Hypothesis testing framework

Recap: hypothesis testing framework

We start with a null hypothesis (H0) that represents the status
quo.

We also have an alternative hypothesis (HA) that represents our
research question, i.e. what we’re testing for.

We conduct a hypothesis test under the assumption that the null
hypothesis is true, either via simulation or traditional methods
based on the central limit theorem (coming up next...).

If the test results suggest that the data do not provide convincing
evidence for the alternative hypothesis, we stick with the null
hypothesis. If they do, then we reject the null hypothesis in favor
of the alternative.

We’ll formally introduce the hypothesis testing framework using an
example on testing a claim about a population mean.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 21 / 69



Hypothesis testing Hypothesis testing framework

Recap: hypothesis testing framework

We start with a null hypothesis (H0) that represents the status
quo.

We also have an alternative hypothesis (HA) that represents our
research question, i.e. what we’re testing for.

We conduct a hypothesis test under the assumption that the null
hypothesis is true, either via simulation or traditional methods
based on the central limit theorem (coming up next...).

If the test results suggest that the data do not provide convincing
evidence for the alternative hypothesis, we stick with the null
hypothesis. If they do, then we reject the null hypothesis in favor
of the alternative.

We’ll formally introduce the hypothesis testing framework using an
example on testing a claim about a population mean.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 21 / 69



Hypothesis testing Hypothesis testing framework

Recap: hypothesis testing framework

We start with a null hypothesis (H0) that represents the status
quo.

We also have an alternative hypothesis (HA) that represents our
research question, i.e. what we’re testing for.

We conduct a hypothesis test under the assumption that the null
hypothesis is true, either via simulation or traditional methods
based on the central limit theorem (coming up next...).

If the test results suggest that the data do not provide convincing
evidence for the alternative hypothesis, we stick with the null
hypothesis. If they do, then we reject the null hypothesis in favor
of the alternative.

We’ll formally introduce the hypothesis testing framework using an
example on testing a claim about a population mean.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 21 / 69



Hypothesis testing Testing hypotheses using confidence intervals

Testing hypotheses using confidence intervals

Earlier we calculated a 95% confidence interval for the average num-
ber of exclusive relationships college students have been in to be (2.7,
3.7). Based on this confidence interval, do these data support the hy-
pothesis that college students on average have been in more than 3
exclusive relationships.

The associated hypotheses are:
H0: µ = 3: College students have been in 3 exclusive relationships, on

average
HA: µ > 3: College students have been in more than 3 exclusive

relationships, on average
Since the null value is included in the interval, we do not reject
the null hypothesis in favor of the alternative.
This is a quick-and-dirty approach for hypothesis testing.
However it doesn’t tell us the likelihood of certain outcomes
under the null hypothesis, i.e. the p-value, based on which we
can make a decision on the hypotheses.
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Hypothesis testing Testing hypotheses using confidence intervals

Number of college applications

A similar survey asked how many colleges students applied to, and 206 stu-
dents responded to this question. This sample yielded an average of 9.7
college applications with a standard deviation of 7. College Board website
states that counselors recommend students apply to roughly 8 colleges. Do
these data provide convincing evidence that the average number of colleges
all Duke students apply to is higher than recommended?

http:// www.collegeboard.com/ student/ apply/ the-application/ 151680.html
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Hypothesis testing Testing hypotheses using confidence intervals

Setting the hypotheses

The parameter of interest is the average number of schools
applied to by all Duke students.

There may be two explanations why our sample mean is higher
than the recommended 8 schools.

The true population mean is different.
The true population mean is 8, and the difference between the
true population mean and the sample mean is simply due to
natural sampling variability.

We start with the assumption the average number of colleges
Duke students apply to is 8 (as recommended)

H0 : µ = 8

We test the claim that the average number of colleges Duke
students apply to is greater than 8

HA : µ > 8
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Hypothesis testing Conditions for inference

Number of college applications - conditions

Which of the following is not a condition that needs to be met to pro-
ceed with this hypothesis test?

(a) Students in the sample should be independent of each other with
respect to how many colleges they applied to.

(b) Sampling should have been done randomly.

(c) The sample size should be less than 10% of the population of all
Duke students.

(d) There should be at least 10 successes and 10 failures in the
sample.

(e) The distribution of the number of colleges students apply to
should not be extremely skewed.
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Hypothesis testing Formal testing using p-values

Test statistic

In order to evaluate if the observed sample mean is unusual for the
hypothesized sampling distribution, we determine how many standard
errors away from the null it is, which is also called the test statistic.

µ = 8 x = 9.7

x̄ ∼ N
(
µ = 8, SE =

7
√

206
= 0.5

)

Z =
9.7 − 8

0.5
= 3.4

The sample mean is 3.4 stan-
dard errors away from the hy-
pothesized value. Is this con-
sidered unusually high? That
is, is the result statistically sig-
nificant?

Yes, and we can quantify how
unusual it is using a p-value.
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Hypothesis testing Formal testing using p-values

p-values

We then use this test statistic to calculate the p-value, the
probability of observing data at least as favorable to the
alternative hypothesis as our current data set, if the null
hypothesis were true.

If the p-value is low (lower than the significance level, α, which is
usually 5%) we say that it would be very unlikely to observe the
data if the null hypothesis were true, and hence reject H0.

If the p-value is high (higher than α) we say that it is likely to
observe the data even if the null hypothesis were true, and hence
do not reject H0.
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do not reject H0.
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Hypothesis testing Formal testing using p-values

Number of college applications - p-value

p-value: probability of observing data at least as favorable to HA as
our current data set (a sample mean greater than 9.7), if in fact H0
were true (the true population mean was 8).

µ = 8 x = 9.7

P(x̄ > 9.7 | µ = 8) = P(Z > 3.4) = 0.0003

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 28 / 69



Hypothesis testing Formal testing using p-values

Number of college applications - p-value

p-value: probability of observing data at least as favorable to HA as
our current data set (a sample mean greater than 9.7), if in fact H0
were true (the true population mean was 8).

µ = 8 x = 9.7

P(x̄ > 9.7 | µ = 8) = P(Z > 3.4) = 0.0003

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 28 / 69



Hypothesis testing Formal testing using p-values

Number of college applications - Making a decision

p-value = 0.0003

If the true average of the number of colleges Duke students
applied to is 8, there is only 0.03% chance of observing a random
sample of 206 Duke students who on average apply to 9.7 or
more schools.
This is a pretty low probability for us to think that a sample mean
of 9.7 or more schools is likely to happen simply by chance.

Since p-value is low (lower than 5%) we reject H0.

The data provide convincing evidence that Duke students apply
to more than 8 schools on average.

The difference between the null value of 8 schools and observed
sample mean of 9.7 schools is not due to chance or sampling
variability.
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Hypothesis testing Formal testing using p-values

A poll by the National Sleep Foundation found that college students average about

7 hours of sleep per night. A sample of 169 college students taking an introductory

statistics class yielded an average of 6.88 hours, with a standard deviation of 0.94

hours. Assuming that this is a random sample representative of all college students

(bit of a leap of faith?), a hypothesis test was conducted to evaluate if college students

on average sleep less than 7 hours per night. The p-value for this hypothesis test is

0.0485. Which of the following is correct?

(a) Fail to reject H0, the data provide convincing evidence that
college students sleep less than 7 hours on average.

(b) Reject H0, the data provide convincing evidence that college
students sleep less than 7 hours on average.

(c) Reject H0, the data prove that college students sleep more than 7
hours on average.

(d) Fail to reject H0, the data do not provide convincing evidence that
college students sleep less than 7 hours on average.

(e) Reject H0, the data provide convincing evidence that college
students in this sample sleep less than 7 hours on average.
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Hypothesis testing Two-sided hypothesis testing with p-values

Two-sided hypothesis testing with p-values

If the research question was “Do the data provide convincing
evidence that the average amount of sleep college students get
per night is different than the national average?”, the alternative
hypothesis would be different.

H0 : µ = 7

HA : µ , 7

Hence the p-value would change as well:

x= 6.88 µ= 7 7.12

p-value
= 0.0485 × 2
= 0.097
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Hypothesis testing Decision errors

Decision errors

Hypothesis tests are not flawless.

In the court system innocent people are sometimes wrongly
convicted and the guilty sometimes walk free.

Similarly, we can make a wrong decision in statistical hypothesis
tests as well.

The difference is that we have the tools necessary to quantify
how often we make errors in statistics.
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Hypothesis testing Decision errors

Decision errors (cont.)

There are two competing hypotheses: the null and the alternative. In
a hypothesis test, we make a decision about which might be true, but
our choice might be incorrect.

Decision
fail to reject H0 reject H0

H0 true

X Type 1 Error

Truth
HA true

Type 2 Error X

A Type 1 Error is rejecting the null hypothesis when H0 is true.

A Type 2 Error is failing to reject the null hypothesis when HA is
true.

We (almost) never know if H0 or HA is true, but we need to
consider all possibilities.
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Hypothesis testing Decision errors

Hypothesis Test as a trial

If we again think of a hypothesis test as a criminal trial then it makes
sense to frame the verdict in terms of the null and alternative
hypotheses:

H0 : Defendant is innocent

HA : Defendant is guilty

Which type of error is being committed in the following cirumstances?

Declaring the defendant innocent when they are actually guilty

Declaring the defendant guilty when they are actually innocent
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Hypothesis testing Decision errors

Hypothesis Test as a trial

If we again think of a hypothesis test as a criminal trial then it makes
sense to frame the verdict in terms of the null and alternative
hypotheses:

H0 : Defendant is innocent

HA : Defendant is guilty

Which type of error is being committed in the following cirumstances?

Declaring the defendant innocent when they are actually guilty
Type 2 error

Declaring the defendant guilty when they are actually innocent
Type 1 error

Which error do you think is the worse error to make?

“better that ten guilty persons escape than that one innocent suffer”

– William Blackstone
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Hypothesis testing Decision errors

Type 1 error rate

As a general rule we reject H0 when the p-value is less than
0.05, i.e. we use a significance level of 0.05, α = 0.05.

This means that, for those cases where H0 is actually true, we do
not want to incorrectly reject it more than 5% of those times.

In other words, when using a 5% significance level there is about
5% chance of making a Type 1 error if the null hypothesis is true.

P(Type 1 error) = α

This is why we prefer small values of α – increasing α increases
the Type 1 error rate.
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Hypothesis testing Choosing a significance level

Choosing a significance level

Choosing a significance level for a test is important in many
contexts, and the traditional level is 0.05. However, it is often
helpful to adjust the significance level based on the application.
We may select a level that is smaller or larger than 0.05
depending on the consequences of any conclusions reached
from the test.
If making a Type 1 Error is dangerous or especially costly, we
should choose a small significance level (e.g. 0.01). Under this
scenario we want to be very cautious about rejecting the null
hypothesis, so we demand very strong evidence favoring HA

before we would reject H0.
If a Type 2 Error is relatively more dangerous or much more
costly than a Type 1 Error, then we should choose a higher
significance level (e.g. 0.10). Here we want to be cautious about
failing to reject H0 when the null is actually false.
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Hypothesis testing Recap

the next two slides are provided as a brief summary of hypothesis
testing...
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Hypothesis testing Recap

Recap: Hypothesis testing framework

1. Set the hypotheses.

2. Check assumptions and conditions.

3. Calculate a test statistic and a p-value.

4. Make a decision, and interpret it in context of the research
question.
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Hypothesis testing Recap

Recap: Hypothesis testing for a population mean

1. Set the hypotheses
H0 : µ = null value
HA : µ < or > or , null value

2. Calculate the point estimate
3. Check assumptions and conditions

Independence: random sample/assignment, 10% condition when
sampling without replacement
Normality: nearly normal population or n ≥ 30, no extreme skew –
or use the t distribution

4. Calculate a test statistic and a p-value (draw a picture!)

Z =
x̄ − µ
SE

, where SE =
s
√

n

5. Make a decision, and interpret it in context
If p-value < α, reject H0, data provide evidence for HA

If p-value > α, do not reject H0, data do not provide evidence for
HA
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Examining the Central Limit Theorem

1 Variability in estimates

2 Confidence intervals

3 Hypothesis testing

4 Examining the Central Limit Theorem

5 Inference for other estimators

6 Sample size and power

7 Statistical vs. practical significance
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Examining the Central Limit Theorem

Average number of basketball games attended

Next let’s look at the population data for the number of basketball
games attended:

number of games attended

0 10 20 30 40 50 60 70

0
50

10
0

15
0
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)

Sampling distribution, n = 10:

sample means from samples of n = 10

5 10 15 20

0
20

0
40

0
60

0
80

0

What does each observa-
tion in this distribution rep-
resent?

Sample mean (x̄) of
samples of size n = 10.

Is the variability of the sam-
pling distribution smaller or
larger than the variability of
the population distribution?
Why?

Smaller, sample means will
vary less than individual
observations.
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)

Sampling distribution, n = 30:

sample means from samples of n = 30
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0
20

0
40

0
60

0
80

0

How did the shape, cen-
ter, and spread of the sam-
pling distribution change go-
ing from n = 10 to n = 30?

Shape is more symmetric,
center is about the same,
spread is smaller.
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)

Sampling distribution, n = 70:

sample means from samples of n = 70
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)

The mean of the sampling distribution is 5.75, and the standard de-
viation of the sampling distribution (also called the standard error) is
0.75. Which of the following is the most reasonable guess for the 95%
confidence interval for the true average number of basketball games
attended by students?

(a) 5.75 ± 0.75
(b) 5.75 ± 2 × 0.75

(c) 5.75 ± 3 × 0.75

(d) cannot tell from the information given
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Examining the Central Limit Theorem

Average number of basketball games attended (cont.)

The mean of the sampling distribution is 5.75, and the standard de-
viation of the sampling distribution (also called the standard error) is
0.75. Which of the following is the most reasonable guess for the 95%
confidence interval for the true average number of basketball games
attended by students?

(a) 5.75 ± 0.75
(b) 5.75 ± 2 × 0.75 → (4.25, 7.25)

(c) 5.75 ± 3 × 0.75

(d) cannot tell from the information given
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Examining the Central Limit Theorem

Four plots: Determine which plot (A, B, or C) is which.

(1) At top: distribution for a population (µ = 10, σ = 7),

(2) a single random sample of 100 observations from this population,

(3) a distribution of 100 sample means from random samples with size 7, and

(4) a distribution of 100 sample means from random samples with size 49.
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µ = 10
σ = 7

(a) A - (3); B - (2); C - (4)

(b) A - (2); B - (3); C - (4)

(c) A - (3); B - (4); C - (2)

(d) A - (4); B - (2); C - (3)
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Inference for other estimators

1 Variability in estimates

2 Confidence intervals

3 Hypothesis testing

4 Examining the Central Limit Theorem

5 Inference for other estimators
Confidence intervals for nearly normal point estimates
Hypothesis testing for nearly normal point estimates
Non-normal point estimates
When to retreat

6 Sample size and power

7 Statistical vs. practical significance
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Inference for other estimators

Inference for other estimators

The sample mean is not the only point estimate for which the
sampling distribution is nearly normal. For example, the
sampling distribution of sample proportions is also nearly normal
when n is sufficiently large.
An important assumption about point estimates is that they are
unbiased, i.e. the sampling distribution of the estimate is
centered at the true population parameter it estimates.

That is, an unbiased estimate does not naturally over or
underestimate the parameter. Rather, it tends to provide a “good”
estimate.
The sample mean is an example of an unbiased point estimate,
as are each of the examples we introduce in this section.

Some point estimates follow distributions other than the normal
distribution, and some scenarios require statistical techniques
that we havenÕt covered yet – we will discuss these at the end of
this section.
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Confidence intervals for nearly normal point estimates

A confidence interval based on an unbiased and nearly normal point
estimate is

point estimate ± z?SE

where z? is selected to correspond to the confidence level, and SE
represents the standard error.

Remember that the value z?SE is called the margin of error.
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Inference for other estimators Confidence intervals for nearly normal point estimates

One of the earliest examples of behavioral asymmetry is a preference in hu-
mans for turning the head to the right, rather than to the left, during the final
weeks of gestation and for the first 6 months after birth. This is thought to
influence subsequent development of perceptual and motor preferences. A
study of 124 couples found that 64.5% turned their heads to the right when
kissing. The standard error associated with this estimate is roughly 4%.
Which of the below is false?

(a) The 95% confidence interval for the percentage of kissers who turn their
heads to the right is roughly 64.5% ± 4%.

(b) A higher sample size would yield a lower standard error.

(c) The margin of error for a 95% confidence interval for the percentage of
kissers who turn their heads to the right is roughly 8%.

(d) The 99.7% confidence interval for the percentage of kissers who turn
their heads to the right is roughly 64.5% ± 12%.

Güntürkün, O. (2003) Adult persistence of head-turning asymmetry. Nature. Vol 421.
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Hypothesis testing for nearly normal point estimates

The third National Health and Nutrition Examination Survey collected
body fat percentage (BF%) and gender data from 13,601 subjects
ages 20 to 80. The average BF% for the 6,580 men in the sample
was 23.9, and this value was 35.0 for the 7,021 women. The standard
error for the difference between the average men and women BF%s
was 0.114. Do these data provide convincing evidence that men and
women have different average BF%s. You may assume that the distri-
bution of the point estimate is nearly normal.

1. Set hypotheses

2. Calculate point estimate

3. Check conditions

4. Draw sampling distribution, shade p-value

5. Calculate test statistics and p-value, make a decision
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Inference for other estimators Hypothesis testing for nearly normal point estimates

1. The null hypothesis is that men and women have equal average
BF%, and the alternative is that these values are different.

H0 : µmen = µwomen HA : µmen , µwomen

2. The parameter of interest is the average difference in the
population means of BF%s for men and women, and the point
estimate for this parameter is the difference between the two
sample means:

x̄men − x̄women = 23.9 − 35.0 = −11.1

3. We are assuming that the distribution of the point estimate is
nearly normal (we will discuss details for checking this condition
in the next chapter, however given the large sample sizes, the
normality assumption doesn’t seem unwarranted).
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Inference for other estimators Hypothesis testing for nearly normal point estimates

4. The sampling distribution will be centered at the null value
(µmen − µwomen = 0), and the p-value is the area beyond the
observed difference in sample means in both tails (lower than
-11.1 and higher than 11.1).

xm−xw= 11.1 µm−µw= 0 11.1
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5. The test statistic is computed as the difference between the point
estimate and the null value (-11.1 - 0 = -11.1), scaled by the
standard error.

Z =
11.1 − 0

0.114
= 97.36

The Z score is huge! And hence the p-value will be tiny, allowing
us to reject H0 in favor of HA.

These data provide convincing evidence that the average BF% of
men and women are different.
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Non-normal point estimates

We may apply the ideas of confidence intervals and hypothesis
testing to cases where the point estimate or test statistic is not
necessarily normal. There are many reasons why such a
situation may arise:

the sample size is too small for the normal approximation to be
valid;
the standard error estimate may be poor; or
the point estimate tends towards some distribution that is not the
normal distribution.

For each case where the normal approximation is not valid, our
first task is always to understand and characterize the sampling
distribution of the point estimate or test statistic. Next, we can
apply the general frameworks for confidence intervals and
hypothesis testing to these alternative distributions.
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When to retreat

Statistical tools rely on the following two main conditions:
Independence A random sample from less than 10% of the
population ensures independence of observations. In
experiments, this is ensured by random assignment. If
independence fails, then advanced techniques must be used, and
in some such cases, inference may not be possible.
Sample size and skew For example, if the sample size is too
small, the skew too strong, or extreme outliers are present, then
the normal model for the sample mean will fail.

Whenever conditions are not satisfied for a statistical technique:
1. Learn new methods that are appropriate for the data.
2. Consult a statistician.
3. Ignore the failure of conditions. This last option effectively

invalidates any analysis and may discredit novel and interesting
findings.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 54 / 69



Sample size and power

1 Variability in estimates

2 Confidence intervals

3 Hypothesis testing

4 Examining the Central Limit Theorem

5 Inference for other estimators

6 Sample size and power
Finding a sample size for a certain margin of error
Power and the Type 2 Error rate

7 Statistical vs. practical significance

OpenIntro Statistics, 2nd Edition

Chp 4: Foundations for inference



Sample size and power Finding a sample size for a certain margin of error

A group of researchers wants to test the possible effect of an epilepsy
medication taken by pregnant mothers on the cognitive development
of their children. As evidence, they want to estimate the IQ scores
of three-year-old children born to mothers who were on this particular
medication during pregnancy. Previous studies suggest that the stan-
dard deviation of IQ scores of three-year-old children is 18 points. How
many such children should the researchers sample in order to obtain
a 96% confidence interval with a margin of error less than or equal to
4 points?

We know that the critical value associated with the 96% confidence
level: z? = 2.05.

4 ≥ 2.05 ∗ 18/
√

n→ n ≥ (2.05 ∗ 18/4)2 = 85.1

The minimum number of children required to attain the desired
margin of error is 85.1. Since we can’t sample 0.1 of a child, we must
sample at least 86 children (round up, since rounding down to 85
would yield a slightly larger margin of error than desired).
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Sample size and power Power and the Type 2 Error rate

Decision
fail to reject H0 reject H0

H0 true

1 − α Type 1 Error, α

Truth
HA true

Type 2 Error, β Power, 1 − β

Type 1 error is rejecting H0 when you shouldn’t have, and the
probability of doing so is α (significance level)

Type 2 error is failing to reject H0 when you should have, and the
probability of doing so is β (a little more complicated to calculate)

Power of a test is the probability of correctly rejecting H0, and the
probability of doing so is 1 − β

In hypothesis testing, we want to keep α and β low, but there are
inherent trade-offs.
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Sample size and power Power and the Type 2 Error rate

Type 2 error rate

If the alternative hypothesis is actually true, what is the chance that
we make a Type 2 Error, i.e. we fail to reject the null hypothesis even
when we should reject it?

The answer is not obvious.

If the true population average is very close to the null hypothesis
value, it will be difficult to detect a difference (and reject H0).

If the true population average is very different from the null
hypothesis value, it will be easier to detect a difference.

Clearly, β depends on the effect size (δ)
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Sample size and power Power and the Type 2 Error rate

Example - Blood Pressure

Blood pressure oscillates with the beating of the heart, and the systolic pressure is
defined as the peak pressure when a person is at rest. The average systolic blood
pressure for people in the U.S. is about 130 mmHg with a standard deviation of about
25 mmHg.

We are interested in finding out if the average blood pressure of employees at a
certain company is greater than the national average, so we collect a random sample
of 100 employees and measure their systolic blood pressure. What are the
hypotheses?
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Example - Blood Pressure

Blood pressure oscillates with the beating of the heart, and the systolic pressure is
defined as the peak pressure when a person is at rest. The average systolic blood
pressure for people in the U.S. is about 130 mmHg with a standard deviation of about
25 mmHg.

We are interested in finding out if the average blood pressure of employees at a
certain company is greater than the national average, so we collect a random sample
of 100 employees and measure their systolic blood pressure. What are the
hypotheses?

H0 : µ = 130

HA : µ > 130

We’ll start with a very specific question – “What is the power of this hypothesis test to

correctly detect an increase of 2 mmHg in average blood pressure?”
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Sample size and power Power and the Type 2 Error rate

Calculating power

The preceding question can be rephrased as “How likely is it that this
test will reject H0 when the true average systolic blood pressure for
employees at this company is 132 mmHg?”

Hint: Break this down intro two simpler problems

1. Problem 1: Which values of x̄ represent sufficient evidence to
reject H0?

2. Problem 2: What is the probability that we would reject H0 if x̄

had come from N
(
mean = 132, SE = 25√

100
= 2.5

)
, i.e. what is the

probability that we can obtain such an x̄ from this distribution?

Determine how power changes as sample size, standard deviation of
the sample, α, and effect size increases.
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Sample size and power Power and the Type 2 Error rate

Problem 1

Which values of x̄ represent sufficient evidence to reject H0?
(Remember H0 : µ = 130, HA : µ > 130)
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Sample size and power Power and the Type 2 Error rate

Problem 1

Which values of x̄ represent sufficient evidence to reject H0?
(Remember H0 : µ = 130, HA : µ > 130)

P(Z > z) < 0.05 ⇒ z > 1.65

x̄ − µ
s/
√

n
> 1.65

x̄ > 130 + 1.65 × 2.5
x̄ > 134.125 130 134.125

0.05
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Problem 1

Which values of x̄ represent sufficient evidence to reject H0?
(Remember H0 : µ = 130, HA : µ > 130)

P(Z > z) < 0.05 ⇒ z > 1.65

x̄ − µ
s/
√

n
> 1.65

x̄ > 130 + 1.65 × 2.5
x̄ > 134.125 130 134.125

0.05

Any x̄ > 134.125 would be sufficient to reject H0 at the 5%
significance level.
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Sample size and power Power and the Type 2 Error rate

Problem 2

What is the probability that we would reject H0 if x̄ did come from
N(mean = 132, SE = 2.5).

This is the same as finding the area above x̄ = 134.125 if x̄ came from
N(132, 2.5).

Z =
134.125 − 132

2.5
= 0.85

P(Z > 0.85) = 1 − 0.8023
= 0.1977 132 134.125

0.8023
0.1977

The probability of rejecting H0 : µ = 130, if the true average systolic blood pressure of
employees at this company is 132 mmHg, is 0.1977 which is the power of this test.

Therefore, β = 0.8023 for this test.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 61 / 69



Sample size and power Power and the Type 2 Error rate

Problem 2

What is the probability that we would reject H0 if x̄ did come from
N(mean = 132, SE = 2.5).

This is the same as finding the area above x̄ = 134.125 if x̄ came from
N(132, 2.5).

Z =
134.125 − 132

2.5
= 0.85

P(Z > 0.85) = 1 − 0.8023
= 0.1977 132 134.125

0.8023
0.1977

The probability of rejecting H0 : µ = 130, if the true average systolic blood pressure of
employees at this company is 132 mmHg, is 0.1977 which is the power of this test.

Therefore, β = 0.8023 for this test.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 61 / 69



Sample size and power Power and the Type 2 Error rate

Problem 2

What is the probability that we would reject H0 if x̄ did come from
N(mean = 132, SE = 2.5).

This is the same as finding the area above x̄ = 134.125 if x̄ came from
N(132, 2.5).

Z =
134.125 − 132

2.5
= 0.85

P(Z > 0.85) = 1 − 0.8023
= 0.1977 132 134.125

0.8023
0.1977

The probability of rejecting H0 : µ = 130, if the true average systolic blood pressure of
employees at this company is 132 mmHg, is 0.1977 which is the power of this test.

Therefore, β = 0.8023 for this test.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 61 / 69



Sample size and power Power and the Type 2 Error rate

Problem 2

What is the probability that we would reject H0 if x̄ did come from
N(mean = 132, SE = 2.5).

This is the same as finding the area above x̄ = 134.125 if x̄ came from
N(132, 2.5).

Z =
134.125 − 132

2.5
= 0.85

P(Z > 0.85) = 1 − 0.8023
= 0.1977 132 134.125

0.8023
0.1977

The probability of rejecting H0 : µ = 130, if the true average systolic blood pressure of
employees at this company is 132 mmHg, is 0.1977 which is the power of this test.

Therefore, β = 0.8023 for this test.

OpenIntro Statistics, 2nd Edition Chp 4: Foundations for inference 61 / 69



Sample size and power Power and the Type 2 Error rate

Putting it all together

Systolic blood pressure

120 125 130 135 140

Null
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Sample size and power Power and the Type 2 Error rate

Achieving desired power

There are several ways to increase power (and hence decrease type
2 error rate):

1. Increase the sample size.
2. Decrease the standard deviation of the sample, which essentially

has the same effect as increasing the sample size (it will
decrease the standard error). With a smaller s we have a better
chance of distinguishing the null value from the observed point
estimate. This is difficult to ensure but cautious measurement
process and limiting the population so that it is more
homogenous may help.

3. Increase α, which will make it more likely to reject H0 (but note
that this has the side effect of increasing the Type 1 error rate).

4. Consider a larger effect size. If the true mean of the population is
in the alternative hypothesis but close to the null value, it will be
harder to detect a difference.
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Sample size and power Power and the Type 2 Error rate

Recap - Calculating Power

Begin by picking a meaningful effect size δ and a significance
level α

Calculate the range of values for the point estimate beyond
which you would reject H0 at the chosen α level.

Calculate the probability of observing a value from preceding
step if the sample was derived from a population where
x̄ ∼ N(µH0 + δ, SE)
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Sample size and power Power and the Type 2 Error rate

Example - Using power to determine sample size

Going back to the blood pressure example, how large a sample would you need if
you wanted 90% power to detect a 4 mmHg increase in average blood pressure for
the hypothesis that the population average is greater than 130 mmHg at α = 0.05?

Given: H0 : µ = 130, HA : µ > 130, α = 0.05, β = 0.10, σ = 25, δ = 4

Step 1: Determine the cutoff – in order to reject H0 at α = 0.05, we need a sample
mean that will yield a Z score of at least 1.65.

x̄ > 130 + 1.65
25
√

n

Step 2: Set the probability of obtaining the above x̄ if the true population is centered
at 130 + 4 = 134 to the desired power, and solve for n.

P
(
x̄ > 130 + 1.65

25
√

n

)
= 0.9

P

Z >

(
130 + 1.65 25

√
n

)
− 134

25
√

n

 = P
(
Z > 1.65 − 4

√
n

25

)
= 0.9
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Sample size and power Power and the Type 2 Error rate

Example - Using power to determine sample size (cont.)

You can either directly solve for n, or use computation to calculate
power for various n and determine the sample size that yields the
desired power:
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Sample size and power Power and the Type 2 Error rate

Example - Using power to determine sample size (cont.)

You can either directly solve for n, or use computation to calculate
power for various n and determine the sample size that yields the
desired power:
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Sample size and power Power and the Type 2 Error rate

Example - Using power to determine sample size (cont.)
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Sample size and power Power and the Type 2 Error rate

Example - Using power to determine sample size (cont.)

You can either directly solve for n, or use computation to calculate
power for various n and determine the sample size that yields the
desired power:
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For n = 336, power = 0.9002, therefore we need 336 subjects in our
sample to achieve the desired level of power for the given
circumstance.
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Statistical vs. practical significance

1 Variability in estimates

2 Confidence intervals

3 Hypothesis testing

4 Examining the Central Limit Theorem

5 Inference for other estimators

6 Sample size and power

7 Statistical vs. practical significance

OpenIntro Statistics, 2nd Edition
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Statistical vs. practical significance

All else held equal, will the p-value be lower if n = 100 or n = 10, 000?

(a) n = 100
(b) n = 10, 000

Suppose x̄ = 50, s = 2, H0 : µ = 49.5, and HA : µ ≥ 49.5.

Zn=100 =
50 − 49.5

2√
100

=
50 − 49.5

2
10

=
0.5
0.2
= 2.5, p-value = 0.0062

Zn=10000 =
50 − 49.5

2√
10000

=
50 − 49.5

2
100

=
0.5
0.02

= 25, p-value ≈ 0

As n increases - SE ↓, Z ↑, p-value ↓
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Statistical vs. practical significance

Test the hypothesis H0 : µ = 10 vs. HA : µ > 10 for the following 8
samples. Assume σ = 2.

x̄ 10.05 10.1 10.2

n = 30 p − value = 0.45 p − value = 0.39 p − value = 0.29

n = 5000 p − value = 0.39 p − value = 0.0002 p − value ≈ 0
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Statistical vs. practical significance

Test the hypothesis H0 : µ = 10 vs. HA : µ > 10 for the following 8
samples. Assume σ = 2.

x̄ 10.05 10.1 10.2

n = 30 p − value = 0.45 p − value = 0.39 p − value = 0.29

n = 5000 p − value = 0.04 p − value = 0.0002 p − value ≈ 0

When n is large, even small deviations from the null (small effect
sizes), which may be considered practically insignificant, can yield
statistically significant results.
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Statistical vs. practical significance

Statistical vs. practical significance

Real differences between the point estimate and null value are
easier to detect with larger samples.
However, very large samples will result in statistical significance
even for tiny differences between the sample mean and the null
value (effect size), even when the difference is not practically
significant.
This is especially important to research: if we conduct a study,
we want to focus on finding meaningful results (we want
observed differences to be real, but also large enough to matter).
The role of a statistician is not just in the analysis of data, but
also in planning and design of a study.

“To call in the statistician after the experiment is done may be no more than asking

him to perform a post-mortem examination: he may be able to say what the

experiment died of.” – R.A. Fisher
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