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Normal distribution

Normal distribution

Unimodal and symmetric, bell shaped curve

Many variables are nearly normal, but none are exactly normal

Denoted as N(µ, σ)→ Normal with mean µ and standard
deviation σ
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Normal distribution

Heights of males

“The male heights on OkCupid very nearly
follow the expected normal distribution –
except the whole thing is shifted to the
right of where it should be. Almost
universally guys like to add a couple
inches.”

“You can also see a more subtle vanity at

work: starting at roughly 5’ 8”, the top of

the dotted curve tilts even further

rightward. This means that guys as they

get closer to six feet round up a bit more

than usual, stretching for that coveted

psychological benchmark.”

http:// blog.okcupid.com/ index.php/ the-biggest-lies-in-online-dating/
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Normal distribution

Heights of females

“When we looked into the data for women,

we were surprised to see height

exaggeration was just as widespread,

though without the lurch towards a

benchmark height.”

http:// blog.okcupid.com/ index.php/ the-biggest-lies-in-online-dating/
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Normal distribution Normal distribution model

Normal distributions with different parameters

µ: mean, σ: standard deviation

N(µ = 0, σ = 1) N(µ = 19, σ = 4)

-3 -2 -1 0 1 2 3

Y

7 11 15 19 23 27 31

0 10 20 30
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Normal distribution Standardizing with Z scores

SAT scores are distributed nearly normally with mean 1500 and stan-
dard deviation 300. ACT scores are distributed nearly normally with
mean 21 and standard deviation 5. A college admissions officer wants
to determine which of the two applicants scored better on their stan-
dardized test with respect to the other test takers: Pam, who earned
an 1800 on her SAT, or Jim, who scored a 24 on his ACT?

600 900 1200 1500 1800 2100 2400

Pam

6 11 16 21 26 31 36

Jim
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Normal distribution Standardizing with Z scores

Standardizing with Z scores

Since we cannot just compare these two raw scores, we instead
compare how many standard deviations beyond the mean each
observation is.

Pam’s score is 1800−1500
300 = 1 standard deviation above the mean.

Jim’s score is 24−21
5 = 0.6 standard deviations above the mean.

−2 −1 0 1 2

PamJim
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Normal distribution Standardizing with Z scores

Standardizing with Z scores (cont.)

These are called standardized scores, or Z scores.

Z score of an observation is the number of standard deviations it
falls above or below the mean.

Z =
observation − mean

SD

Z scores are defined for distributions of any shape, but only
when the distribution is normal can we use Z scores to calculate
percentiles.

Observations that are more than 2 SD away from the mean
(|Z| > 2) are usually considered unusual.
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Normal distribution Standardizing with Z scores

Percentiles

Percentile is the percentage of observations that fall below a
given data point.

Graphically, percentile is the area below the probability
distribution curve to the left of that observation.

600 900 1200 1500 1800 2100 2400
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Normal distribution Normal probability table

Calculating percentiles - using computation

There are many ways to compute percentiles/areas under the curve:

R:

> pnorm(1800, mean = 1500, sd = 300)

[1] 0.8413447

Applet: http:// www.socr.ucla.edu/ htmls/ SOCR Distributions.html
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Normal distribution Normal probability table

Calculating percentiles - using tables

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
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Normal distribution Normal probability examples

Six sigma

“The term six sigma process comes from the notion that if one has six
standard deviations between the process mean and the nearest
specification limit, as shown in the graph, practically no items will fail
to meet specifications.”

http:// en.wikipedia.org/ wiki/ Six Sigma
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Normal distribution Normal probability examples

Quality control

At Heinz ketchup factory the amounts which go into bottles of ketchup are
supposed to be normally distributed with mean 36 oz. and standard deviation
0.11 oz. Once every 30 minutes a bottle is selected from the production line,
and its contents are noted precisely. If the amount of ketchup in the bottle
is below 35.8 oz. or above 36.2 oz., then the bottle fails the quality control
inspection. What percent of bottles have less than 35.8 ounces of ketchup?

Let X = amount of ketchup in a bottle: X ∼ N(µ = 36, σ = 0.11)

35.8 36

Z =
35.8 − 36

0.11
= −1.82
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Normal distribution Normal probability examples

Finding the exact probability - using the Z table

Second decimal place of Z
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Z

0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 −2.9
0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 −2.8
0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 −2.7
0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 −2.6
0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 −2.5
0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 −2.4
0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 −2.3
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 −2.2
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 −2.1
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 −2.0
0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 −1.7
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 −1.6
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 −1.5

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 14 / 56



Normal distribution Normal probability examples

Finding the exact probability - using the Z table

Second decimal place of Z
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Z

0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 −2.9
0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 −2.8
0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 −2.7
0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 −2.6
0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 −2.5
0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 −2.4
0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 −2.3
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 −2.2
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 −2.1
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 −2.0
0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 −1.7
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 −1.6
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 −1.5

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 14 / 56



Normal distribution Normal probability examples

Practice

What percent of bottles pass the quality control inspection?

(a) 1.82%

(b) 3.44%

(c) 6.88%

(d) 93.12%

(e) 96.56%

35.8 36 36.2

=

36 36.2

-

35.8 36

Z35.8 =
35.8 − 36

0.11
= −1.82

Z36.2 =
36.2 − 36

0.11
= 1.82

P(35.8 < X < 36.2) = P(−1.82 < Z < 1.82) = 0.9656 − 0.0344 = 0.9312
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Normal distribution Normal probability examples

Finding cutoff points

Body temperatures of healthy humans are distributed nearly normally
with mean 98.2◦F and standard deviation 0.73◦F. What is the cutoff for
the lowest 3% of human body temperatures?

? 98.2

0.03

0.09 0.08 0.07 0.06 0.05 Z

0.0233 0.0239 0.0244 0.0250 0.0256 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 −1.7

P(X < x) = 0.03→ P(Z < -1.88) = 0.03

Z =
obs − mean

SD
→

x − 98.2
0.73

= −1.88

x = (−1.88 × 0.73) + 98.2 = 96.8◦F

Mackowiak, Wasserman, and Levine (1992), A Critical Appraisal of 98.6 Degrees F, the Upper Limit of the Normal Body

Temperature, and Other Legacies of Carl Reinhold August Wunderlick.
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? 98.2

0.03

0.09 0.08 0.07 0.06 0.05 Z

0.0233 0.0239 0.0244 0.0250 0.0256 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 −1.7

P(X < x) = 0.03→ P(Z < -1.88) = 0.03

Z =
obs − mean

SD
→

x − 98.2
0.73

= −1.88

x = (−1.88 × 0.73) + 98.2 = 96.8◦F

Mackowiak, Wasserman, and Levine (1992), A Critical Appraisal of 98.6 Degrees F, the Upper Limit of the Normal Body

Temperature, and Other Legacies of Carl Reinhold August Wunderlick.
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Normal distribution Normal probability examples

Practice

Body temperatures of healthy humans are distributed nearly normally
with mean 98.2◦F and standard deviation 0.73◦F. What is the cutoff for
the highest 10% of human body temperatures?
(a) 97.3◦F

(b) 99.1◦F

(c) 99.4◦F

(d) 99.6◦F

98.2 ?

0.100.90

Z 0.05 0.06 0.07 0.08 0.09

1.0 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9115 0.9131 0.9147 0.9162 0.9177

P(X > x) = 0.10→ P(Z < 1.28) = 0.90

Z =
obs − mean

SD
→

x − 98.2
0.73

= 1.28

x = (1.28 × 0.73) + 98.2 = 99.1
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Normal distribution 68-95-99.7 rule

68-95-99.7 Rule

For nearly normally distributed data,
about 68% falls within 1 SD of the mean,
about 95% falls within 2 SD of the mean,
about 99.7% falls within 3 SD of the mean.

It is possible for observations to fall 4, 5, or more standard
deviations away from the mean, but these occurrences are very
rare if the data are nearly normal.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

99.7%

95%

68%

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 18 / 56



Normal distribution 68-95-99.7 rule

Describing variability using the 68-95-99.7 Rule

SAT scores are distributed nearly normally with mean 1500 and
standard deviation 300.

∼68% of students score between 1200 and 1800 on the SAT.
∼95% of students score between 900 and 2100 on the SAT.
∼99.7% of students score between 600 and 2400 on the SAT.

600 900 1200 1500 1800 2100 2400

99.7%

95%

68%
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Normal distribution 68-95-99.7 rule

Number of hours of sleep on school nights

4 5 6 7 8 9

0

20

40

60

80

mean =  6.88
sd =  0.93

Mean = 6.88 hours, SD = 0.92 hrs
72% of the data are within 1 SD of the mean: 6.88 ± 0.93
92% of the data are within 1 SD of the mean: 6.88 ± 2 × 0.93
99% of the data are within 1 SD of the mean: 6.88 ± 3 × 0.93
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Normal distribution 68-95-99.7 rule

Practice

Which of the following is false?

(a) Majority of Z scores in a right skewed distribution are negative.

(b) In skewed distributions the Z score of the mean might be different
than 0.

(c) For a normal distribution, IQR is less than 2 × SD.

(d) Z scores are helpful for determining how unusual a data point is
compared to the rest of the data in the distribution.
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Evaluating the normal approximation

1 Normal distribution

2 Evaluating the normal approximation
Normal probability plot

3 Geometric distribution

4 Binomial distribution
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Evaluating the normal approximation Normal probability plot

Normal probability plot

A histogram and normal probability plot of a sample of 100 male
heights.

Male heights (in)

60 65 70 75 80

Theoretical Quantiles

M
al

e 
he

ig
ht

s 
(in

)
−2 −1 0 1 2

65

70

75
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Evaluating the normal approximation Normal probability plot

Anatomy of a normal probability plot

Data are plotted on the y-axis of a normal probability plot, and
theoretical quantiles (following a normal distribution) on the
x-axis.

If there is a linear relationship in the plot, then the data follow a
nearly normal distribution.

Constructing a normal probability plot requires calculating
percentiles and corresponding z-scores for each observation,
which is tedious. Therefore we generally rely on software when
making these plots.
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Evaluating the normal approximation Normal probability plot

Below is a histogram and normal probability plot for the NBA heights
from the 2008-2009 season. Do these data appear to follow a normal
distribution?

NBA heights (in)

70 75 80 85 90

Theoretical quantiles
N

B
A

 h
ei

gh
ts

 (
in

)

−3 −2 −1 0 1 2 3

70

75

80

85

90

Why do the points on the normal probability have jumps?
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Evaluating the normal approximation Normal probability plot

Normal probability plot and skewness

Right skew - Points bend up and to the left of the line.

Left skew- Points bend down and to the right of the line.

Short tails (narrower than the normal distribution) -
Points follow an S shaped-curve.

Long tails (wider than the normal distribution) - Points
start below the line, bend to follow it, and end above it.
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Geometric distribution

1 Normal distribution

2 Evaluating the normal approximation

3 Geometric distribution
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Geometric distribution Bernoulli distribution

Milgram experiment

Stanley Milgram, a Yale University
psychologist, conducted a series of
experiments on obedience to
authority starting in 1963.

Experimenter (E) orders the teacher
(T), the subject of the experiment, to
give severe electric shocks to a
learner (L) each time the learner
answers a question incorrectly.

The learner is actually an actor, and
the electric shocks are not real, but a
prerecorded sound is played each
time the teacher administers an
electric shock.

http:// en.wikipedia.org/ wiki/ File:

Milgram Experiment v2.png
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Geometric distribution Bernoulli distribution

Milgram experiment (cont.)

These experiments measured the willingness of study
participants to obey an authority figure who instructed them to
perform acts that conflicted with their personal conscience.

Milgram found that about 65% of people would obey authority
and give such shocks.

Over the years, additional research suggested this number is
approximately consistent across communities and time.
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Geometric distribution Bernoulli distribution

Bernouilli random variables

Each person in Milgram’s experiment can be thought of as a trial.

A person is labeled a success if she refuses to administer a
severe shock, and failure if she administers such shock.

Since only 35% of people refused to administer a shock,
probability of success is p = 0.35.

When an individual trial has only two possible outcomes, it is
called a Bernoulli random variable.
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Geometric distribution Geometric distribution

Geometric distribution

Dr. Smith wants to repeat Milgram’s experiments but she only wants to sam-
ple people until she finds someone who will not inflict a severe shock. What
is the probability that she stops after the first person?

P(1st person refuses) = 0.35

... the third person?

P(1st and 2nd shock, 3rd refuses) =
S

0.65 ×
S

0.65 ×
R

0.35 = 0.652×0.35 ≈ 0.15

... the tenth person?

P(9 shock, 10th refuses) =
S

0.65 × · · · ×
S

0.65︸                      ︷︷                      ︸
9 of these

×
R

0.35 = 0.659×0.35 ≈ 0.0072
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Geometric distribution Geometric distribution

Geometric distribution (cont.)

Geometric distribution describes the waiting time until a success for
independent and identically distributed (iid) Bernouilli random
variables.

independence: outcomes of trials don’t affect each other

identical: the probability of success is the same for each trial

Geometric probabilities

If p represents probability of success, (1 − p) represents probability of
failure, and n represents number of independent trials

P(success on the nth trial) = (1 − p)n−1p
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Geometric distribution Geometric distribution

Geometric distribution (cont.)
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Geometric distribution Geometric distribution

Can we calculate the probability of rolling a 6 for the first time on the
6th roll of a die using the geometric distribution? Note that what was a
success (rolling a 6) and what was a failure (not rolling a 6) are clearly
defined and one or the other must happen for each trial.

(a) no, on the roll of a die there are more than 2 possible outcomes

(b) yes, why not
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Geometric distribution Geometric distribution

Can we calculate the probability of rolling a 6 for the first time on the
6th roll of a die using the geometric distribution? Note that what was a
success (rolling a 6) and what was a failure (not rolling a 6) are clearly
defined and one or the other must happen for each trial.

(a) no, on the roll of a die there are more than 2 possible outcomes

(b) yes, why not

P(6 on the 6th roll) =
(
5
6

)5 (
1
6

)
≈ 0.067
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Geometric distribution Geometric distribution

Expected value

How many people is Dr. Smith expected to test before finding the first
one that refuses to administer the shock?

The expected value, or the mean, of a geometric distribution is
defined as 1

p .

µ =
1
p
=

1
0.35

= 2.86

She is expected to test 2.86 people before finding the first one that
refuses to administer the shock.
But how can she test a non-whole number of people?

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 32 / 56



Geometric distribution Geometric distribution

Expected value

How many people is Dr. Smith expected to test before finding the first
one that refuses to administer the shock?

The expected value, or the mean, of a geometric distribution is
defined as 1

p .

µ =
1
p
=

1
0.35

= 2.86

She is expected to test 2.86 people before finding the first one that
refuses to administer the shock.
But how can she test a non-whole number of people?

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 32 / 56



Geometric distribution Geometric distribution

Expected value

How many people is Dr. Smith expected to test before finding the first
one that refuses to administer the shock?

The expected value, or the mean, of a geometric distribution is
defined as 1

p .

µ =
1
p
=

1
0.35

= 2.86

She is expected to test 2.86 people before finding the first one that
refuses to administer the shock.

But how can she test a non-whole number of people?

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 32 / 56



Geometric distribution Geometric distribution

Expected value

How many people is Dr. Smith expected to test before finding the first
one that refuses to administer the shock?

The expected value, or the mean, of a geometric distribution is
defined as 1

p .

µ =
1
p
=

1
0.35

= 2.86

She is expected to test 2.86 people before finding the first one that
refuses to administer the shock.
But how can she test a non-whole number of people?

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 32 / 56



Geometric distribution Geometric distribution

Expected value and its variability

Mean and standard deviation of geometric distribution

µ =
1
p

σ =

√
1 − p

p2

Going back to Dr. Smith’s experiment:

σ =

√
1 − p

p2 =

√
1 − 0.35

0.352 = 2.3

Dr. Smith is expected to test 2.86 people before finding the first
one that refuses to administer the shock, give or take 2.3 people.

These values only make sense in the context of repeating the
experiment many many times.
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Binomial distribution
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2 Evaluating the normal approximation

3 Geometric distribution

4 Binomial distribution
The binomial distribution
Normal approximation to the binomial

OpenIntro Statistics, 2nd Edition

Chp 3: Distributions of RVs



Binomial distribution The binomial distribution

Suppose we randomly select four individuals to participate in this ex-
periment. What is the probability that exactly 1 of them will refuse to
administer the shock?

Let’s call these people Allen (A), Brittany (B), Caroline (C), and
Damian (D). Each one of the four scenarios below will satisfy the
condition of “exactly 1 of them refuses to administer the shock”:

Scenario 1:
0.35

(A) refuse
×

0.65
(B) shock

×
0.65

(C) shock
×

0.65
(D) shock

= 0.0961

Scenario 2:
0.65

(A) shock
×

0.35
(B) refuse

×
0.65

(C) shock
×

0.65
(D) shock

= 0.0961

Scenario 3:
0.65

(A) shock
×

0.65
(B) shock

×
0.35

(C) refuse
×

0.65
(D) shock

= 0.0961

Scenario 4:
0.65

(A) shock
×

0.65
(B) shock

×
0.65

(C) shock
×

0.35
(D) refuse
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Binomial distribution The binomial distribution

Binomial distribution

The question from the prior slide asked for the probability of given
number of successes, k, in a given number of trials, n, (k = 1 success
in n = 4 trials), and we calculated this probability as

# of scenarios × P(single scenario)

# of scenarios: there is a less tedious way to figure this out, we’ll
get to that shortly...

P(single scenario) = pk (1 − p)(n−k)

probability of success to the power of number of successes, probability of failure to the power of number of failures

The Binomial distribution describes the probability of having exactly k
successes in n independent Bernouilli trials with probability of
success p.
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Binomial distribution The binomial distribution

Counting the # of scenarios

Earlier we wrote out all possible scenarios that fit the condition of
exactly one person refusing to administer the shock. If n was larger
and/or k was different than 1, for example, n = 9 and k = 2:

RRSSSSSSS
SRRSSSSSS
SSRRSSSSS

· · ·

SSRSSRSSS
· · ·

SSSSSSSRR

writing out all possible scenarios would be incredibly tedious and
prone to errors.
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Binomial distribution The binomial distribution

Calculating the # of scenarios

Choose function

The choose function is useful for calculating the number of ways to
choose k successes in n trials.(

n
k

)
=

n!
k!(n − k)!

k = 1, n = 4:
(
4
1

)
= 4!

1!(4−1)! =
4×3×2×1

1×(3×2×1) = 4

k = 2, n = 9:
(
9
2

)
= 9!

2!(9−1)! =
9×8×7!
2×1×7! =

72
2 = 36

Note: You can also use R for these calculations:

> choose(9,2)

[1] 36
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Binomial distribution The binomial distribution

Properties of the choose function

Which of the following is false?

(a) There are n ways of getting 1 success in n trials,
(
n
1

)
= n.

(b) There is only 1 way of getting n successes in n trials,
(
n
n

)
= 1.

(c) There is only 1 way of getting n failures in n trials,
(
n
0

)
= 1.

(d) There are n − 1 ways of getting n − 1 successes in n trials,(
n

n−1

)
= n − 1.
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Binomial distribution The binomial distribution

Binomial distribution (cont.)

Binomial probabilities

If p represents probability of success, (1 − p) represents probability of
failure, n represents number of independent trials, and k represents
number of successes

P(k successes in n trials) =
(
n
k

)
pk (1 − p)(n−k)
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Binomial distribution The binomial distribution

Which of the following is not a condition that needs to be met for the
binomial distribution to be applicable?

(a) the trials must be independent

(b) the number of trials, n, must be fixed

(c) each trial outcome must be classified as a success or a failure

(d) the number of desired successes, k, must be greater than the
number of trials

(e) the probability of success, p, must be the same for each trial
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Binomial distribution The binomial distribution

A 2012 Gallup survey suggests that 26.2% of Americans are obese.
Among a random sample of 10 Americans, what is the probability that
exactly 8 are obese?

(a) pretty high

(b) pretty low

Gallup: http:// www.gallup.com/ poll/ 160061/ obesity-rate-stable-2012.aspx, January 23, 2013.
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Binomial distribution The binomial distribution

A 2012 Gallup survey suggests that 26.2% of Americans are obese.
Among a random sample of 10 Americans, what is the probability that
exactly 8 are obese?

(a) 0.2628 × 0.7382

(b)
(

8
10

)
× 0.2628 × 0.7382

(c)
(
10
8

)
× 0.2628 × 0.7382

(d)
(
10
8

)
× 0.2622 × 0.7388
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A 2012 Gallup survey suggests that 26.2% of Americans are obese.
Among a random sample of 10 Americans, what is the probability that
exactly 8 are obese?

(a) 0.2628 × 0.7382

(b)
(

8
10

)
× 0.2628 × 0.7382

(c)
(
10
8

)
× 0.2628 × 0.7382 = 45 × 0.2628 × 0.7382 = 0.0005

(d)
(
10
8

)
× 0.2622 × 0.7388
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Binomial distribution The binomial distribution

The birthday problem

What is the probability that 2 randomly chosen people share a birth-
day?

Pretty low, 1
365 ≈ 0.0027.

What is the probability that at least 2 people out of 366 people share a
birthday?

Exactly 1! (Excluding the possibility of a leap year birthday.)
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Binomial distribution The binomial distribution

The birthday problem (cont.)

What is the probability that at least 2 people (1 match) out of 121 peo-
ple share a birthday?

Somewhat complicated to calculate, but we can think of it as the
complement of the probability that there are no matches in 121
people.

P(no matches) = 1 ×
(
1 −

1
365

)
×

(
1 −

2
365

)
× · · · ×

(
1 −

120
365

)
=

365 × 364 × · · · × 245
365121

=
365!

365121 × (365 − 121)!

=
121! ×

(
365
121

)
365121 ≈ 0

P(at least 1 match) ≈ 1
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P(at least 1 match) ≈ 1
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Binomial distribution The binomial distribution

Expected value

A 2012 Gallup survey suggests that 26.2% of Americans are obese.

Among a random sample of 100 Americans, how many would you ex-
pect to be obese?

Easy enough, 100 × 0.262 = 26.2.

Or more formally, µ = np = 100 × 0.262 = 26.2.

But this doesn’t mean in every random sample of 100 people
exactly 26.2 will be obese. In fact, that’s not even possible. In
some samples this value will be less, and in others more. How
much would we expect this value to vary?
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Binomial distribution The binomial distribution

Expected value and its variability

Mean and standard deviation of binomial distribution

µ = np σ =
√

np(1 − p)

Going back to the obesity rate:

σ =
√

np(1 − p) =
√

100 × 0.262 × 0.738 ≈ 4.4

We would expect 26.2 out of 100 randomly sampled Americans
to be obese, with a standard deviation of 4.4.

Note: Mean and standard deviation of a binomial might not always be whole

numbers, and that is alright, these values represent what we would expect to see on

average.
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Binomial distribution The binomial distribution

Unusual observations

Using the notion that observations that are more than 2 standard
deviations away from the mean are considered unusual and the mean
and the standard deviation we just computed, we can calculate a
range for the plausible number of obese Americans in random
samples of 100.

26.2 ± (2 × 4.4) = (17.4, 35)
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Binomial distribution The binomial distribution

An August 2012 Gallup poll suggests that 13% of Americans think
home schooling provides an excellent education for children. Would
a random sample of 1,000 Americans where only 100 share this opin-
ion be considered unusual?

(a) No (b) Yes

http:// www.gallup.com/ poll/ 156974/ private-schools-top-marks-educating-children.aspx
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µ = np = 1, 000 × 0.13 = 130

σ =
√

np(1 − p) =
√

1, 000 × 0.13 × 0.87 ≈ 10.6
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Binomial distribution The binomial distribution

An August 2012 Gallup poll suggests that 13% of Americans think
home schooling provides an excellent education for children. Would
a random sample of 1,000 Americans where only 100 share this opin-
ion be considered unusual?

(a) No (b) Yes

µ = np = 1, 000 × 0.13 = 130

σ =
√

np(1 − p) =
√

1, 000 × 0.13 × 0.87 ≈ 10.6

Method 1: Range of usual observations: 130 ± 2 × 10.6 = (108.8, 151.2)
100 is outside this range, so would be considered unusual.
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Binomial distribution The binomial distribution

An August 2012 Gallup poll suggests that 13% of Americans think
home schooling provides an excellent education for children. Would
a random sample of 1,000 Americans where only 100 share this opin-
ion be considered unusual?

(a) No (b) Yes

µ = np = 1, 000 × 0.13 = 130

σ =
√

np(1 − p) =
√

1, 000 × 0.13 × 0.87 ≈ 10.6

Method 1: Range of usual observations: 130 ± 2 × 10.6 = (108.8, 151.2)
100 is outside this range, so would be considered unusual.

Method 2: Z-score of observation: Z = x−mean
SD = 100−130

10.6 = −2.83
100 is more than 2 SD below the mean, so would be considered
unusual.

http:// www.gallup.com/ poll/ 156974/ private-schools-top-marks-educating-children.aspx
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Binomial distribution Normal approximation to the binomial

Shapes of binomial distributions

For this activity you will use a web applet. Go to
http:// socr.stat.ucla.edu/ htmls/ SOCR Experiments.html and choose
Binomial coin experiment in the drop down menu on the left.

Set the number of trials to 20 and the probability of success to
0.15. Describe the shape of the distribution of number of
successes.

Keeping p constant at 0.15, determine the minimum sample size
required to obtain a unimodal and symmetric distribution of
number of successes. Please submit only one response per
team.
Further considerations:

What happens to the shape of the distribution as n stays constant
and p changes?
What happens to the shape of the distribution as p stays constant
and n changes?
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Binomial distribution Normal approximation to the binomial

Distributions of number of successes

Hollow histograms of samples from the binomial model where p = 0.10
and n = 10, 30, 100, and 300. What happens as n increases?

n = 10

0 2 4 6

n = 30

0 2 4 6 8 10

n = 100

0 5 10 15 20

n = 300

10 20 30 40 50

OpenIntro Statistics, 2nd Edition Chp 3: Distributions of RVs 50 / 56



Binomial distribution Normal approximation to the binomial

Low large is large enough?

The sample size is considered large enough if the expected number
of successes and failures are both at least 10.

np ≥ 10 and n(1 − p) ≥ 10
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Binomial distribution Normal approximation to the binomial

Low large is large enough?

The sample size is considered large enough if the expected number
of successes and failures are both at least 10.

np ≥ 10 and n(1 − p) ≥ 10

10 × 0.13 = 1.3; 10 × (1 − 0.13) = 8.7
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Binomial distribution Normal approximation to the binomial

Below are four pairs of Binomial distribution parameters. Which distri-
bution can be approximated by the normal distribution?

(a) n = 100, p = 0.95
(b) n = 25, p = 0.45

(c) n = 150, p = 0.05

(d) n = 500, p = 0.015
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Binomial distribution Normal approximation to the binomial

Below are four pairs of Binomial distribution parameters. Which distri-
bution can be approximated by the normal distribution?

(a) n = 100, p = 0.95
(b) n = 25, p = 0.45 → 25 × 0.45 = 11.25; 25 × 0.55 = 13.75

(c) n = 150, p = 0.05

(d) n = 500, p = 0.015
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Binomial distribution Normal approximation to the binomial

An analysis of Facebook users

A recent study found that “Facebook users get more than they give”.
For example:

40% of Facebook users in our sample made a friend request, but
63% received at least one request

Users in our sample pressed the like button next to friends’
content an average of 14 times, but had their content “liked” an
average of 20 times

Users sent 9 personal messages, but received 12

12% of users tagged a friend in a photo, but 35% were
themselves tagged in a photo

Any guesses for how this pattern can be explained?

http:// www.pewinternet.org/ Reports/ 2012/ Facebook-users/ Summary.aspx
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Binomial distribution Normal approximation to the binomial

An analysis of Facebook users

A recent study found that “Facebook users get more than they give”.
For example:

40% of Facebook users in our sample made a friend request, but
63% received at least one request

Users in our sample pressed the like button next to friends’
content an average of 14 times, but had their content “liked” an
average of 20 times

Users sent 9 personal messages, but received 12

12% of users tagged a friend in a photo, but 35% were
themselves tagged in a photo

Any guesses for how this pattern can be explained?

Power users contribute much more content than the typical user.

http:// www.pewinternet.org/ Reports/ 2012/ Facebook-users/ Summary.aspx
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Binomial distribution Normal approximation to the binomial

This study also found that approximately 25% of Facebook users are
considered power users. The same study found that the average Face-
book user has 245 friends. What is the probability that the average
Facebook user with 245 friends has 70 or more friends who would be
considered power users? Note any assumptions you must make.

We are given that n = 245, p = 0.25, and we are asked for the
probability P(K ≥ 70). To proceed, we need independence, which
we’ll assume but could check if we had access to more Facebook
data.

P(X ≥ 70) = P(K = 70 or K = 71 or K = 72 or · · · or K = 245)

= P(K = 70) + P(K = 71) + P(K = 72) + · · · + P(K = 245)

This seems like an awful lot of work...
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Binomial distribution Normal approximation to the binomial

Normal approximation to the binomial

When the sample size is large enough, the binomial distribution with
parameters n and p can be approximated by the normal model with
parameters µ = np and σ =

√
np(1 − p).

In the case of the Facebook power users, n = 245 and p = 0.25.

µ = 245 × 0.25 = 61.25 σ =
√

245 × 0.25 × 0.75 = 6.78

Bin(n = 245, p = 0.25) ≈ N(µ = 61.25, σ = 6.78).

k

20 40 60 80 100

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Bin(245,0.25)
N(61.5,6.78)
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Binomial distribution Normal approximation to the binomial

What is the probability that the average Facebook user with 245 friends
has 70 or more friends who would be considered power users?

61.25 70

Z =
obs − mean

SD
=

70 − 61.25
6.78

= 1.29

Second decimal place of Z
Z 0.05 0.06 0.07 0.08 0.09

1.0 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8944 0.8962 0.8980 0.8997 0.9015

P(Z > 1.29) = 1 − 0.9015 = 0.0985
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