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Preface

This text introduces statistics and its applications in the life sciences and biomedical re-
search. It is based on the freely available OpenIntro Statistics, and, like OpenIntro, it may
be downloaded at no cost.1 In writing Introduction to Statistics for the Life and Biomedical
Sciences, we have added substantial new material, but also retained some examples and
exercises from OpenIntro that illustrate important ideas even if they do not relate directly
to medicine or the life sciences. Because of its link to the original OpenIntro project, this
text is often referred to as OpenIntro Biostatistics in the supplementary materials.

This text is intended for undergraduate and graduate students interested in careers
in biology or medicine, and may also be profitably read by students of public health or
medicine. It covers many of the traditional introductory topics in statistics, in addition to
discussing some newer methods being used in molecular biology.

Statistics has become an integral part of research in medicine and biology, and the
tools for summarizing data and drawing inferences from data are essential both for under-
standing the outcomes of studies and for incorporating measures of uncertainty into that
understanding. An introductory text in statistics for students who will work in medicine,
public health, or the life sciences should be more than simply the usual introduction, sup-
plemented with an occasional example from biology or medical science. By drawing the
majority of examples and exercises in this text from published data, we hope to convey
the value of statistics in medical and biological research. In cases where examples draw on
important material in biology or medicine, the problem statement contains the necessary
background information.

Computing is an essential part of the practice of statistics. Nearly everyone entering
the biomedical sciences will need to interpret the results of analyses conducted in soft-
ware; many will also need to be capable of conducting such analyses. This set of materials
separates those two activities to allow students and instructors to emphasize either or both
skills. The text discusses the important features of figures and tables used to support an
interpretation, rather than the process of generating such material from data. This allows
students whose main focus is understanding statistical concepts to not be distracted by
the details of a particular software package. In our experience, however, we have found
that many students enter a research setting after only a single course in statistics. These
students benefit from a practical introduction to data analysis that incorporates the use of
a statistical computing language. There are self-paced learning labs associated with the
text provide such an introduction; these are described in more detail later in this pref-
ace. The datasets used in this book are available via the R openintro package available on
CRAN2 and the R oibiostat package available via GitHub.

1PDF available at https://www.openintro.org/book/biostat/ and source available at https://github.com/
OI-Biostat/oi_biostat_text.

2Diez DM, Barr CD, Çetinkaya-Rundel M. 2012. openintro: OpenIntro data sets and supplement functions.

5

<https://github.com/OI-Biostat/oi_biostat_data>
https://www.openintro.org/book/biostat/
https://github.com/OI-Biostat/oi_biostat_text
https://github.com/OI-Biostat/oi_biostat_text


6 CONTENTS

Textbook overview

The chapters of this book are as follows:

1. Introduction to data. Data structures, basic data collection principles, numerical and
graphical summaries, and exploratory data analysis.

2. Probability. The basic principles of probability.

3. Distributions of random variables. Introduction to random variables and distributions
of discrete and continuous distributions.

4. Foundations for inference. General ideas for statistical inference in the context of es-
timating a population mean.

5. Inference for numerical data. Inference for one-sample and two-sample means with
the t distribution, power calculations for a difference of means, and ANOVA.

6. Simple linear regression. An introduction to linear regression with a single explana-
tory variable, evaluating model assumptions, and inference in a regression context.

7. Multiple linear regression. General multiple regression model, categorical predictors
with more than two values, interaction, and model selection.

8. Inference for categorical data. Inference for proportions using the normal and chi-
square distributions, as well as exact techniques.

Examples, exercises, and appendices

Just as in OpenIntro Statistics, Third Edition, examples and within-chapter exercises through-
out the textbook may be identified by their distinctive bullets:

 Example 0.1 Large filled bullets signal the start of an example.

Full solutions to examples are provided within the main text and often include an
accompanying table or figure.⊙
Guided Practice 0.2 Empty bullets signal readers that an exercise has been in-
serted into the text for additional practice and guidance. Solutions are provided for
all within-chapter exercises in footnotes.3

There are exercises at the end of each chapter that are useful for practice or home-
work assignments. Solutions are in Appendix ??. Readers will notice that there are fewer
end of chapter exercises in the later chapters. The more complicated methods, such as
multiple regression, do not lend themselves to hand calculation and computing is in-
creasingly important to gain practical experience with these methods. We feel there are
enough traditional end of chapter exercises to reinforce concepts and the examples in the
text illustrate some computer output. The labs for these chapters become an increasingly
important part of mastering the material.

Probability tables for the normal, t, and chi-square distributions are in Appendix A,
and PDF copies of these tables are also available from openintro.org for anyone to down-
load, print, share, or modify. The labs and the text also illustrate the use of simple R
commands to calculate probabilities from common distributions.

http://cran.r-project.org/web/packages/openintro.
3Full solutions are located in the footnotes.

http://www.openintro.org
http://cran.r-project.org/web/packages/openintro
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Self-paced learning labs

The labs associated with the text can be downloaded from https://github.com/OI-Biostat/
oi_biostat_labs. They provide guidance on conducting data analysis and visualization
with the R statistical language and the computing environment RStudio, while building
understanding of statistical concepts. The labs begin from first principles and require
no previous experience with statistical software. Both R and RStudio are freely available
for all major computing operating systems, and the Unit 0 labs (00_getting_started)
provide information on downloading and installing them. Information on downloading
and installing the packages may also be found at openintro.org.

The labs for each chapter all have the same structure. Each lab consists of a set
of three documents: a handout with the problem statements, a template to be used for
working through the lab, and a solution set with the problem solutions. The handout and
solution set are most easily read in PDF format (although Rmd files are also provided),
while the template is an Rmd file that can be loaded into RStudio. Each chapter of labs
is accompanied by a set of "Lab Notes", which provides a reference guide of all new R
functions discussed in the labs.

Learning is best done, of course, if a student attempts the lab exercises before reading
the solutions. The "Lab Notes" may be a useful resource to refer to while working through
problems.

OpenIntro, online resources, and getting involved

OpenIntro is an organization focused on developing free and affordable education materi-
als. The first project, OpenIntro Statistics, is intended for introductory statistics courses at
the high school through university levels. Other projects examine the use of randomiza-
tion methods for learning about statistics and conducting analyses (Introductory Statistics
with Randomization and Simulation) and advanced statistics that may be taught at the high
school level (Advanced High School Statistics).

We encourage anyone learning or teaching statistics to visit openintro.org and get in-
volved by using the many online resources, which are all free, or by creating new material.
Students can test their knowledge with practice quizzes, or try an application of concepts
learned in each chapter using real data and the top-rated and free statistical software R.
Teachers can download the source for course materials, labs, slides, data sets, R figures,
or create their own custom quizzes and problem sets for students to take on the website.
Everyone is also welcome to download this textbook as a PDF or the book’s source files
to create a custom version of this textbook or to simply share a copy with a friend or on
a website. All of these products are free, and anyone is welcome to use these online tools
and resources with or without this textbook as a companion.

Acknowledgements

The OpenIntro project would not have been possible without the dedication and volunteer
hours of all those involved. The authors of OpenIntro Statistics would like to thank Andrew
Bray, Meenal Patel, Yongtao Guan, Filipp Brunshteyn, Rob Gould, and Chris Pope for their
involvement and contributions. Dalene Stangl, Dave Harrington, Jan de Leeuw, Kevin
Rader, and Philippe Rigollet provided valuable feedback on early editions of the text.

This text has benefited from feedback from Andrea Foulkes, Raji Balasubramanian,
Curry Hilton, Michael Parzen and Kevin Rader. The cover design was provided by Pierre
Baduel.

https://github.com/OI-Biostat/oi_biostat_labs
https://github.com/OI-Biostat/oi_biostat_labs
http://www.openintro.org


Chapter 1

Introduction to data

Making observations and recording data form the backbone of empirical research, and
represent the beginning of a systematic approach to investigating scientific questions. As
a discipline, statistics focuses on addressing the following three questions in a rigorous
and efficient manner: How can data best be collected? How should data be analyzed?
What can be inferred from data?

This chapter provides a brief discussion on the principles of data collection, and
introduces basic methods for summarizing and exploring data.

1.1 Case study: preventing peanut allergies

The proportion of young children in Western countries with peanut allergies has doubled
in the last 10 years. Previous research suggests that exposing infants to peanut-based
foods, rather than excluding such foods from their diets, may be an effective strategy
for preventing the development of peanut allergies. The "Learning Early about Peanut
Allergy" (LEAP) study was conducted to investigate whether early exposure to peanut
products reduces the probability that a child will develop peanut allergies.1

The study team enrolled children in the United Kingdom between 2006 and 2009,
selecting 640 infants with eczema, egg allergy, or both. Each child was randomly assigned
to either the peanut consumption (treatment) group or the peanut avoidance (control)
group. Children in the treatment group were fed at least 6 grams of peanut protein daily
until 5 years of age, while children in the control group avoided consuming peanut protein
until 5 years of age.

At 5 years of age, each child was tested for peanut allergy using an oral food challenge
(OFC): 5 grams of peanut protein in a single dose. A child was recorded as passing the oral
food challenge if no allergic reaction was detected, and failing the oral food challenge if an
allergic reaction occurred. These children had previously been tested for peanut allergy
through a skin test, conducted at the time of study entry; the main analysis presented in
the paper was based on data from 530 children with an earlier negative skin test.2

Individual-level data from the study are shown in Table 1.1, for 5 of the 530 chil-
dren—each row represents a participant, and shows the participant’s study ID number,

1Du Toit, George, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. New
England Journal of Medicine 372.9 (2015): 803-813.

2Although a total of 542 children had an earlier negative skin test, data collection did not occur for 12
children.
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1.1. CASE STUDY 9

treatment group assignment, and OFC outcome.3

participant.ID treatment.group overall.V60.outcome
LEAP_100522 Peanut Consumption PASS OFC
LEAP_103358 Peanut Consumption PASS OFC
LEAP_105069 Peanut Avoidance PASS OFC
LEAP_994047 Peanut Avoidance PASS OFC
LEAP_997608 Peanut Consumption PASS OFC

Table 1.1: Individual-level LEAP results, for five children.

The data can be organized in the form of a two-way summary table; Table 1.2 shows
the results categorized by treatment group and OFC outcome.

FAIL OFC PASS OFC Sum
Peanut Avoidance 36 227 263

Peanut Consumption 5 262 267
Sum 41 489 530

Table 1.2: Summary of LEAP results, organized by treatment group (either
peanut avoidance or consumption) and result of the oral food challenge at
5 years of age (either pass or fail).

The summary table makes it easier to identify patterns in the data. Recall that the
question of interest is whether children in the peanut consumption group are more or
less likely to develop peanut allergies than those in the peanut avoidance group. In the
avoidance group, the proportion of children failing the OFC is 36/263 = 0.137 (13.7%);
in the consumption group, the proportion of children failing the OFC is 5/267 = 0.019
(1.9%). Figure 1.3 shows a graphical method of displaying the study results, using either
the number of individuals per category from Table 1.2 or the proportion of individuals
with a specific OFC outcome in a group.

Peanut Avoidance Peanut Consumption
0

50

100

150

200

250
FAIL OFC
PASS OFC

(a)

Peanut Avoidance Peanut Consumption
0.0

0.2

0.4

0.6

0.8

1.0
FAIL OFC
PASS OFC

(b)

Figure 1.3: (a) A bar plot displaying the number of individuals who failed
or passed the OFC in each treatment group. (b) A bar plot displaying the
proportions of individuals in each group that failed or passed the OFC.

3The data are available as LEAP in the R package oibiostat.
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The proportion of participants failing the OFC is 11.8% higher in the peanut avoid-
ance group than the peanut consumption group. Another way to summarize the data is
to compute the ratio of the two proportions (0.137/0.019 = 7.31), and conclude that the
proportion of participants failing the OFC in the avoidance group is more than 7 times as
large as in the consumption group; i.e., the risk of failing the OFC was more than 7 times
as great for participants in the avoidance group relative to the consumption group.

Based on the results of the study, it seems that early exposure to peanut products
may be an effective strategy for reducing the chances of developing peanut allergies later
in life. It is important to note that this study was conducted in the United Kingdom at
a single site of pediatric care; it is not clear that these results can be generalized to other
countries or cultures.

The results also raise an important statistical issue: does the study provide definitive
evidence that peanut consumption is beneficial? In other words, is the 11.8% difference
between the two groups larger than one would expect by chance variation alone? The
material on inference in later chapters will provide the statistical tools to evaluate this
question.
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1.2 Data basics

Effective organization and description of data is a first step in most analyses. This section
introduces a structure for organizing data and basic terminology used to describe data.

1.2.1 Observations, variables, and data matrices

In evolutionary biology, parental investment refers to the amount of time, energy, or other
resources devoted towards raising offspring. This section introduces the frog dataset,
which originates from a 2013 study about maternal investment in a frog species.4 Repro-
duction is a costly process for female frogs, necessitating a trade-off between individual
egg size and total number of eggs produced. Researchers were interested in investigat-
ing how maternal investment varies with altitude, and collected measurements on egg
clutches found at breeding ponds across 11 study sites; for 5 sites, the body size of indi-
vidual female frogs was also recorded.

altitude latitude egg.size clutch.size clutch.volume body.size
1 3,462.00 34.82 1.95 181.97 177.83 3.63
2 3,462.00 34.82 1.95 269.15 257.04 3.63
3 3,462.00 34.82 1.95 158.49 151.36 3.72

150 2,597.00 34.05 2.24 537.03 776.25 NA

Table 1.4: Data matrix for the frog dataset.

Table 1.4 displays rows 1, 2, 3, and 150 of the data from the 431 clutches observed as
part of the study.5 Each row in the table corresponds to a single clutch, indicating where
the clutch was collected (altitude and latitude), egg.size, clutch.size, clutch.volume,
and body.size of the mother when available. "NA" corresponds to a missing value, in-
dicating that information on an individual female was not collected for that particular
clutch. The recorded characteristics are referred to as variables; in this table, each col-
umn represents a variable.

It is important to check the definitions of variables, as they are not always obvious.
For example, why has clutch.size not been recorded as whole numbers? For a given
clutch, researchers counted approximately 5 grams’ worth of eggs and then estimated the
total number of eggs based on the mass of the entire clutch. Definitions of the variables
are given in Table 1.5.6

The data in Table 1.4 are organized as a data matrix. Each row of a data matrix
corresponds to an observational unit, and each column corresponds to a variable. A piece
of the data matrix for the LEAP study introduced in Section 1.1 is shown in Table 1.1;
the rows are study participants and three variables are shown for each participant. Data
matrices are a convenient way to record and store data. If the data are collected for another
individual, another row can easily be added; similarly, another column can be added for
a new variable.

4Chen, W., et al. Maternal investment increases with altitude in a frog on the Tibetan Plateau. Journal of
evolutionary biology 26.12 (2013): 2710-2715.

5The frog dataset is available in the R package oibiostat.
6The data discussed here are in the original scale; in the published paper, some values have undergone a

natural log transformation.
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variable description
altitude Altitude of the study site in meters above sea level
latitude Latitude of the study site measured in degrees
egg.size Average diameter of an individual egg to the 0.01 mm
clutch.size Estimated number of eggs in clutch
clutch.volume Volume of egg clutch in mm3

body.size Length of mother frog in cm

Table 1.5: Variables and their descriptions for the frog dataset.

1.2.2 Types of variables

The Functional polymorphisms Associated with human Muscle Size and Strength study
(FAMuSS) measured a variety of demographic, phenotypic, and genetic characteristics for
about 1,300 participants.7 Data from the study have been used in a number of subsequent
studies8, such as one examining the relationship between muscle strength and genotype
at a location on the ACTN3 gene.9

The famuss dataset is a subset of the data for 595 participants.10 Four rows of the
famuss dataset are shown in Table 1.6, and the variables are described in Table 1.7.

sex age race height weight actn3.r577x ndrm.ch
1 Female 27 Caucasian 65.0 199.0 CC 40.0
2 Male 36 Caucasian 71.7 189.0 CT 25.0
3 Female 24 Caucasian 65.0 134.0 CT 40.0

595 Female 30 Caucasian 64.0 134.0 CC 43.8

Table 1.6: Four rows from the famuss data matrix.

The variables age, height, weight, and ndrm.ch are numerical variables. They take on
numerical values, and it is reasonable to add, subtract, or take averages with these values.
In contrast, a variable reporting telephone numbers would not be classified as numerical,
since sums, differences, and averages in this context have no meaning. Age measured in
years is said to be discrete, since it can only take on numerical values with jumps; i.e.,
positive integer values. Percent change in strength in the non-dominant arm (ndrm.ch) is
continuous, and can take on any value within a specified range.

The variables sex, race, and actn3.r577x are categorical variables, which take on
values that are names or labels. The possible values of a categorical variable are called the
variable’s levels.11 For example, the levels of actn3.r577x are the three possible genotypes
at this particular locus: CC, CT, or TT. Categorical variables without a natural ordering are
called nominal categorical variables; sex, race, and actn3.r577x are all nominal categori-
cal variables. Categorical variables with levels that have a natural ordering are referred to
as ordinal categorical variables. For example, age of the participants grouped into 5-year
intervals (15-20, 21-25, 26-30, etc.) is an ordinal categorical variable.

7Thompson PD, Moyna M, Seip, R, et al., 2004. Functional Polymorphisms Associated with Human Muscle
Size and Strength. Medicine and Science in Sports and Exercise 36:1132 - 1139.

8Pescatello L, et al. Highlights from the functional single nucleotide polymorphisms associated with human
muscle size and strength or FAMuSS study, BioMed Research International 2013.

9Clarkson P, et al., Journal of Applied Physiology 99: 154-163, 2005.
10The subset is from Foulkes, Andrea S. Applied statistical genetics with R: for population-based association

studies. Springer Science & Business Media, 2009. The full version of the data is available at http://people.
umass.edu/foulkes/asg/data.html.

11Categorical variables are sometimes called factor variables.

http://people.umass.edu/foulkes/asg/data.html
http://people.umass.edu/foulkes/asg/data.html
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variable description
sex Sex of the participant
age Age in years
race Race, recorded as African Am (African American), Caucasian, Asian,

Hispanic or Other
height Height in inches
weight Weight in pounds
actn3.r577x Genotype at the location r577x in the ACTN3 gene.
ndrm.ch Percent change in strength in the non-dominant arm, comparing strength

after to before training

Table 1.7: Variables and their descriptions for the famuss dataset.

Figure 1.8: Breakdown of variables into their respective types.

 Example 1.1 Classify the variables in the frog dataset: altitude, latitude, egg.size,
clutch.size, clutch.volume, and body.size.

The variables egg.size, clutch.size, clutch.volume, and body.size are continuous
numerical variables, and can take on all positive values.

In the context of this study, the variables altitude and latitude are best described
as categorical variables, since the numerical values of the variables correspond to
the 11 specific study sites where data were collected. Researchers were interested in
exploring the relationship between altitude and maternal investment; it would be
reasonable to consider altitude an ordinal categorical variable.⊙
Guided Practice 1.2 Characterize the variables treatment.group and overall.V60.outcome

from the LEAP study (discussed in Section 1.1).12

⊙
Guided Practice 1.3 Suppose that on a given day, a research assistant collected
data on the first 20 individuals visiting a walk-in clinic: age (measured as less than
21, 21 - 65, and greater than 65 years of age), sex, height, weight, and reason for the
visit. Classify each of the variables.13

12These variables measure non-numerical quantities, and thus are categorical variables with two levels.
13Height and weight are continuous numerical variables. Age as measured by the research assistant is ordinal

categorical. Sex and the reason for the visit are nominal categorical variables.
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1.2.3 Relationships between variables

Many studies are motivated by a researcher examining how two or more variables are
related. For example, do the values of one variable increase as the values of another de-
crease? Do the values of one variable tend to differ by the levels of another variable?

One study used the famuss data to investigate whether ACTN3 genotype at a partic-
ular location (residue 577) is associated with change in muscle strength. The ACTN3 gene
codes for a protein involved in muscle function. A common mutation in the gene at a spe-
cific location changes the cytosine (C) nucleotide to a thymine (T) nucleotide; individuals
with the TT genotype are unable to produce any ACTN3 protein.

Researchers hypothesized that genotype at this location might influence muscle func-
tion. As a measure of muscle function, they recorded the percent change in non-dominant
arm strength after strength training; this variable, ndrm.ch, is the response variable in the
study. A response variable is defined by the particular research question a study seeks to
address, and measures the outcome of interest in the study. A study will typically exam-
ine whether the values of a response variable differ as values of an explanatory variable
change, and if so, how the two variables are related. A given study may examine several
explanatory variables for a single response variable.14 The explanatory variable examined
in relation to ndrm.ch in the study is actn3.r557x, ACTN3 genotype at location 577.

 Example 1.4 In the maternal investment study conducted on frogs, researchers
collected measurements on egg clutches and female frogs at 11 study sites, located
at differing altitudes, in order to investigate how maternal investment varies with
altitude. Identify the response and explanatory variables in the study.

The variables egg.size, clutch.size, and clutch.volume are response variables in-
dicative of maternal investment.

The explanatory variable examined in the study is altitude.

While latitude is an environmental factor that might potentially influence features
of the egg clutches, it is not a variable of interest in this particular study.

Female body size (body.size) is neither an explanatory nor response variable.⊙
Guided Practice 1.5 Refer to the variables from the famuss dataset described in
Table 1.7 to formulate a question about the relationships between these variables,
and identify the response and explanatory variables in the context of the question.15

14Response variables are sometimes called dependent variables and explanatory variables are often called
independent variables or predictors.

15Two sample questions: (1) Does change in participant arm strength after training seem associated with
race? The response variable is ndrm.ch and the explanatory variable is race. (2) Do male participants appear
to respond differently to strength training than females? The response variable is ndrm.ch and the explanatory
variable is sex.
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1.3 Data collection principles

The first step in research is to identify questions to investigate. A clearly articulated re-
search question is essential for selecting subjects to be studied, identifying relevant vari-
ables, and determining how data should be collected.

1.3.1 Populations and samples

Consider the following research questions:

1. Do bluefin tuna from the Atlantic Ocean have particularly high levels of mercury,
such that they are unsafe for human consumption?

2. For infants predisposed to developing a peanut allergy, is there evidence that intro-
ducing peanut products early in life is an effective strategy for reducing the risk of
developing a peanut allergy?

3. Does a recently developed drug designed to treat glioblastoma, a form of brain can-
cer, appear more effective at inducing tumor shrinkage than the drug currently on
the market?

Each of these questions refers to a specific target population. For example, in the
first question, the target population consists of all bluefin tuna from the Atlantic Ocean;
each individual bluefin tuna represents a case. It is almost always either too expensive or
logistically impossible to collect data for every case in a population. As a result, nearly all
research is based on information obtained about a sample from the population. A sample
represents a small fraction of the population. Researchers interested in evaluating the
mercury content of bluefin tuna from the Atlantic Ocean could collect a sample of 500
bluefin tuna (or some other quantity), measure the mercury content, and use the observed
information to formulate an answer to the research question.⊙

Guided Practice 1.6 Identify the target populations for the remaining two re-
search questions.16

1.3.2 Anecdotal evidence

Anecdotal evidence typically refers to unusual observations that are easily recalled be-
cause of their striking characteristics. Physicians may be more likely to remember the
characteristics of a single patient with an unusually good response to a drug instead of
the many patients who did not respond. The dangers of drawing general conclusions
from anecdotal information are obvious; no single observation should be used to draw
conclusions about a population.

While it is incorrect to generalize from individual observations, unusual observa-
tions can sometimes be valuable. E.C. Heyde was a general practitioner from Vancouver
who noticed that a few of his elderly patients with aortic-valve stenosis (an abnormal nar-
rowing) caused by an accumulation of calcium had also suffered massive gastrointestinal
bleeding. In 1958, he published his observation.17 Further research led to the identifica-
tion of the underlying cause of the association, now called Heyde’s Syndrome.18

16In Question 2, the target population consists of infants predisposed to developing a peanut allergy. In
Question 3, the target population consists of patients with glioblastoma.

17Heyde EC. Gastrointestinal bleeding in aortic stenosis. N Engl J Med 1958;259:196.
18Greenstein RJ, McElhinney AJ, Reuben D, Greenstein AJ. Co-lonic vascular ectasias and aortic stenosis:

coincidence or causal relationship? Am J Surg 1986;151:347-51.
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An anecdotal observation can never be the basis for a conclusion, but may well in-
spire the design of a more systematic study that could be definitive.

1.3.3 Sampling from a population

Sampling from a population, when done correctly, provides reliable information about
the characteristics of a large population. The US Centers for Disease Control (US CDC)
conducts several surveys to obtain information about the US population, including the
Behavior Risk Factor Surveillance System (BRFSS).19 The BRFSS was established in 1984
to collect data about health-related risk behaviors, and now collects data from more than
400,000 telephone interviews conducted each year. Data from a recent BRFSS survey are
used in Chapter 4. The CDC conducts similar surveys for diabetes, health care access,
and immunization. Likewise, the World Health Organization (WHO) conducts the World
Health Survey in partnership with approximately 70 countries to learn about the health
of adult populations and the health systems in those countries.20

The general principle of sampling is straightforward: a sample from a population
is useful for learning about a population only when the sample is representative of the
population. In other words, the characteristics of the sample should correspond to the
characteristics of the population.

Suppose that the quality improvement team at an integrated health care system, such
as Harvard Pilgrim Health Care, is interested in learning about how members of the health
plan perceive the quality of the services offered under the plan. A common pitfall in con-
ducting a survey is to use a convenience sample, in which individuals who are easily
accessible are more likely to be included in the sample than other individuals. If a sample
were collected by approaching plan members visiting an outpatient clinic during a par-
ticular week, the sample would fail to enroll generally healthy members who typically do
not use outpatient services or schedule routine physical examinations; this method would
produce an unrepresentative sample (Figure 1.9).

Figure 1.9: Instead of sampling from all members equally, approaching
members visiting a clinic during a particular week disproportionately se-
lects members who frequently use outpatient services.

19https://www.cdc.gov/brfss/index.html
20http://www.who.int/healthinfo/survey/en/

https://www.cdc.gov/brfss/index.html
http://www.who.int/healthinfo/survey/en/
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Random sampling is the best way to ensure that a sample reflects a population. In
a simple random sample, each member of a population has the same chance of being
sampled. One way to achieve a simple random sample of the health plan members is to
randomly select a certain number of names from the complete membership roster, and
contact those individuals for an interview (Figure 1.10).

Figure 1.10: Five members are randomly selected from the population to
be interviewed.

Even when a simple random sample is taken, it is not guaranteed that the sample is
representative of the population. If the non-response rate for a survey is high, that may
be indicative of a biased sample. Perhaps a majority of participants did not respond to the
survey because only a certain group within the population is being reached; for example,
if questions assume that participants are fluent in English, then a high non-response rate
would be expected if the population largely consists of individuals who are not fluent
in English (Figure ??). Such non-response bias can skew results; generalizing from an
unrepresentative sample may likely lead to incorrect conclusions about a population.⊙

Guided Practice 1.7 It is increasingly common for health care facilities to follow-
up a patient visit with an email providing a link to a website where patients can
rate their experience. Typically, less than 50% of patients visit the website. If half
of those who respond indicate a negative experience, do you think that this implies
that at least 25% of patient visits are unsatisfactory?21

21It is unlikely that the patients who respond constitute a representative sample from the larger population
of patients. This is not a random sample, because individuals are selecting themselves into a group, and it is
unclear that each person has an equal chance of answering the survey. If our experience is any guide, dissatisfied
people are more likely to respond to these informal surveys than satisfied patients.
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Figure 1.11: Surveys may only reach a certain group within the popula-
tion, which leads to non-response bias. For example, a survey written in
English may only result in responses from health plan members fluent in
English.

1.3.4 Sampling methods

Almost all statistical methods are based on the notion of implied randomness. If data
are not sampled from a population at random, these statistical methods – calculating
estimates and errors associated with estimates – are not reliable. Four random sampling
methods are discussed in this section: simple, stratified, cluster, and multistage sampling.

In a simple random sample, each case in the population has an equal chance of
being included in the sample (Figure 1.12). Under simple random sampling, each case is
sampled independently of the other cases; i.e., knowing that a certain case is included in
the sample provides no information about which other cases have also been sampled.

In stratified sampling, the population is first divided into groups called strata be-
fore cases are selected within each stratum (typically through simple random sampling)
(Figure 1.12). The strata are chosen such that similar cases are grouped together. Strat-
ified sampling is especially useful when the cases in each stratum are very similar with
respect to the outcome of interest, but cases between strata might be quite different.

Suppose that the health care provider has facilities in different cities. If the range of
services offered differ by city, but all locations in a given city will offer similar services, it
would be effective for the quality improvement team to use stratified sampling to identify
participants for their study, where each city represents a stratum and plan members are
randomly sampled from each city.

In a cluster sample, the population is first divided into many groups, called clus-
ters. Then, a fixed number of clusters is sampled and all observations from each of those
clusters are included in the sample (Figure 1.13). A multistage sample is similar to a
cluster sample, but rather than keeping all observations in each cluster, a random sample
is collected within each selected cluster (Figure 1.13).

Unlike with stratified sampling, cluster and multistage sampling are most helpful
when there is high case-to-case variability within a cluster, but the clusters themselves are
similar to one another. For example, if neighborhoods in a city represent clusters, cluster
and multistage sampling work best when the population within each neighborhood is
very diverse, but neighborhoods are relatively similar.
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Figure 1.12: Examples of simple random and stratified sampling. In the
top panel, simple random sampling is used to randomly select 18 cases
(circled orange dots) out of the total population (all dots). The bottom
panel illustrates stratified sampling: cases are grouped into six strata, then
simple random sampling is employed within each stratum.
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Figure 1.13: Examples of cluster and multistage sampling. The top panel
illustrates cluster sampling: data are binned into nine clusters, three of
which are sampled, and all observations within these clusters are sampled.
The bottom panel illustrates multistage sampling, which differs from clus-
ter sampling in that only a subset from each of the three selected clusters
are sampled.
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Applying stratified, cluster, or multistage sampling can often be more economical
than only drawing random samples. However, analysis of data collected using such meth-
ods is more complicated than when using data from a simple random sample; this text
will only discuss analysis methods for simple random samples.

 Example 1.8 Suppose researchers are interested in estimating the malaria rate in a
densely tropical portion of rural Indonesia. There are 30 villages in the area, each
more or less similar to the others. The goal is to test 150 individuals for malaria.
Evaluate which sampling method should be employed.

A simple random sample would likely draw individuals from all 30 villages, which
could make data collection extremely expensive. Stratified sampling is not advis-
able, since there is not enough information to determine how strata of similar in-
dividuals could be built. However, cluster sampling or multistage sampling are
both reasonable options. For example, with multistage sampling, half of the vil-
lages could be randomly selected, and then 10 people selected from each village.
This strategy is more efficient than a simple random sample, and can still provide a
sample representative of the population of interest.

1.3.5 Introducing experiments and observational studies

The two primary types of study designs used to collect data are experiments and observa-
tional studies.

In an experiment, researchers directly influence how data arise, such as by assigning
groups of individuals to different treatments and assessing how the outcome varies across
treatment groups. The LEAP study is an example of an experiment with two groups, an
experimental group that received the intervention (peanut consumption) and a control
group that received a standard approach (peanut avoidance). In studies assessing effec-
tiveness of a new drug, individuals in the control group typically receive a placebo, an
inert substance with the appearance of the experimental intervention. The study is de-
signed such that on average, the only difference between the individuals in the treatment
groups is whether or not they consumed peanut protein. This allows for observed differ-
ences in experimental outcome to be directly attributed to the intervention and constitute
evidence of a causal relationship between intervention and outcome.

In an observational study, researchers merely observe and record data, without in-
terfering with how the data arise. For example, to investigate why certain diseases de-
velop, researchers might collect data by conducting surveys, reviewing medical records,
or following a cohort of many similar individuals. Observational studies can provide
evidence of an association between variables, but cannot by themselves show a causal
connection. However, there are many instances where randomized experiments are un-
ethical, such as to explore whether lead exposure in young children is associated with
cognitive impairment.

1.3.6 Experiments

Experimental design is based on three principles: control, randomization, and replication.

Control. When selecting participants for a study, researchers work to control for extra-
neous variables and choose a sample of participants that is representative of the
population of interest. For example, participation in a study might be restricted to
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individuals who have a condition that suggests they may benefit from the interven-
tion being tested. Infants enrolled in the LEAP study were required to be between 4
and 11 months of age, with severe eczema and/or allergies to eggs.

Randomization. Randomly assigning patients to treatment groups ensures that groups
are balanced with respect to both variables that can and cannot be controlled. For
example, randomization in the LEAP study ensures that the proportion of males
to females is approximately the same in both groups. Additionally, perhaps some
infants were more susceptible to peanut allergy because of an undetected genetic
condition; under randomization, it is reasonable to assume that such infants were
present in equal numbers in both groups. Randomization allows differences in out-
come between the groups to be reasonably attributed to the treatment rather than in-
herent variability in patient characteristics, since the treatment represents the only
systematic difference between the two groups.

In situations where researchers suspect that variables other than the intervention
may influence the response, individuals can be first grouped into blocks according
to a certain attribute and then randomized to treatment group within each block;
this technique is referred to as blocking or stratification. The team behind the
LEAP study stratified infants into two cohorts based on whether or not the child
developed a red, swollen mark (a wheal) after a skin test at the time of enrollment;
afterwards, infants were randomized between peanut consumption and avoidance
groups. Figure 1.14 illustrates the blocking scheme used in the study.

Replication. The results of a study conducted on a larger number of cases are generally
more reliable than smaller studies; observations made from a large sample are more
likely to be representative of the population of interest. In a single study, repli-
cation is accomplished by collecting a sufficiently large sample. The LEAP study
randomized a total of 640 infants.

Randomized experiments are an essential tool in research. The US Food and Drug
Administration typically requires that a new drug can only be marketed after two in-
dependently conducted randomized trials confirm its safety and efficacy; the European
Medicines Agency has a similar policy. Large randomized experiments in medicine have
provided the basis for major public health initiatives. In 1954, approximately 750,000
children participated in a randomized study comparing polio vaccine with a placebo.22

In the United States, the results of the study quickly led to the widespread and successful
use of the vaccine for polio prevention.

1.3.7 Observational studies

In observational studies, researchers simply observe selected potential explanatory and
response variables. Participants who differ in important explanatory variables may also
differ in other ways that influence response; as a result, it is not advisable to make causal
conclusions about the relationship between explanatory and response variables based on
observational data. For example, while observational studies of obesity have shown that
obese individuals tend to die sooner than individuals with normal weight, it would be
misleading to conclude that obesity causes shorter life expectancy. Instead, underlying

22Meier, Paul. "The biggest public health experiment ever: the 1954 field trial of the Salk poliomyelitis
vaccine." Statistics: a guide to the unknown. San Francisco: Holden-Day (1972): 2-13.
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Figure 1.14: A simplified schematic of the blocking scheme used in the
LEAP study, depicting 640 patients that underwent randomization. Pa-
tients are first divided into blocks based on response to the initial skin
test, then each block is randomized between the avoidance and consump-
tion groups. This strategy ensures an even representation of patients in
each group who had positive and negative skin tests.



24 CHAPTER 1. INTRODUCTION TO DATA

factors are probably involved; obese individuals typically exhibit other health behaviors
that influence life expectancy, such as reduced exercise or unhealthy diet.

Suppose that an observational study tracked sunscreen use and incidence of skin
cancer, and found that the more sunscreen a person uses, the more likely they are to
have skin cancer. These results do not mean that sunscreen causes skin cancer. One
important piece of missing information is sun exposure – if someone is often exposed to
sun, they are both more likely to use sunscreen and to contract skin cancer. Sun exposure
is a confounding variable: a variable associated with both the explanatory and response
variables.23 There is no guarantee that all confounding variables can be examined or
measured; as a result, it is not advisable to draw causal conclusions from observational
studies.

Confounding is not limited to observational studies. For example, consider a ran-
domized study comparing two treatments (varenicline and buproprion) against a placebo
as therapies for aiding smoking cessation.24 At the beginning of the study, participants
were randomized into groups: 352 to varenicline, 329 to buproprion, and 344 to placebo.
Not all participants successfully completed the assigned therapy: 259, 225, and 215 pa-
tients in each group did so, respectively. If an analysis were based only on the partici-
pants who completed therapy, this could introduce confounding; it is possible that there
are underlying differences between individuals who complete the therapy and those who
do not. Including all randomized participants in the final analysis maintains the original
randomization scheme and controls for differences between the groups.25⊙

Guided Practice 1.9 As stated in Example 1.4, female body size (body.size) in
the parental investment study is neither an explanatory nor a response variable.
Previous research has shown that larger females tend to produce larger eggs and
egg clutches; however, large body size can be costly at high altitudes. Discuss a
possible reason for why the study team chose to measure female body size when it
is not directly related to their main research question.26

Observational studies may reveal interesting patterns or associations that can be fur-
ther investigated with follow-up experiments. Several observational studies based on di-
etary data from different countries showed a strong association between dietary fat and

23Also called a lurking variable, confounding factor, or a confounder.
24Jorenby, Douglas E., et al. "Efficacy of varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist,

vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial." JAMA 296.1
(2006): 56-63.

25This strategy, commonly used for analyzing clinical trial data, is referred to as an intention-to-treat analysis.
26Female body size is a potential confounding variable, since it may be associated with both the explanatory

variable (altitude) and response variables (measures of maternal investment). If the study team observes, for ex-
ample, that clutch size tends to decrease at higher altitudes, they should check whether the apparent association
is not simply due to frogs at higher altitudes having smaller body size and thus, laying smaller clutches.
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breast cancer in women. These observations led to the launch of the Women’s Health Ini-
tiative (WHI), a large randomized trial sponsored by the US National Institutes of Health
(NIH). In the WHI, women were randomized to standard versus low fat diets, and the
previously observed association was not confirmed.

Observational studies can be either prospective or retrospective. A prospective study
identifies participants and collects information at scheduled times or as events unfold. For
example, in the Nurses’ Health Study, researchers recruited registered nurses beginning
in 1976 and collected data through administering biennial surveys; data from the study
have been used to investigate risk factors for major chronic diseases in women.27 Retro-
spective studies collect data after events have taken place, such as from medical records.
Some datasets may contain both retrospectively- and prospectively-collected variables.
The Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) enrolled
participants with lung or colorectal cancer, collected information about diagnosis, treat-
ment, and previous health behavior, but also maintained contact with participants to
gather data about long-term outcomes.28

27www.channing.harvard.edu/nhs
28Ayanian, John Z., et al. "Understanding cancer treatment and outcomes: the cancer care outcomes research

and surveillance consortium." Journal of Clinical Oncology 22.15 (2004): 2992-2996

http://www.openintro.org/redirect.php?go=textbook-channing_nurse_study&referrer=os3_pdf
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1.4 Numerical data

This section discusses techniques for exploring and summarizing numerical variables,
using the frog data from the parental investment study introduced in Section 1.2.

1.4.1 Measures of center: mean and median

The mean, sometimes called the average, is a measure of center for a distribution of
data. To find the average clutch volume for the observed egg clutches, add all the clutch
volumes and divide by the total number of clutches.29

x =
177.8 + 257.0 + · · ·+ 933.3

431
= 882.5 mm3

The sample mean is often labeled x, to distinguish it from µ, the mean of the entire popu-x
sample
mean
µ
population
mean

lation from which the sample is drawn. The letter x is being used as a generic placeholder
for the variable of interest, clutch.volume.

Mean

The sample mean of a numerical variable is the sum of the values of all observa-
tions divided by the number of observations:

x =
x1 + x2 + · · ·+ xn

n
(1.10)

where x1,x2, . . . ,xn represent the n observed values.

The median is another measure of center; it is the middle number in a distribution
after the values have been ordered from smallest to largest. If the distribution contains an
even number of observations, the median is the average of the middle two observations.
There are 431 clutches in the dataset, so the median is the clutch volume of the 216th

observation in the sorted values of clutch.volume: 831.8 mm3.

1.4.2 Measures of spread: standard deviation and interquartile range

The spread of a distribution refers to how similar or varied the values in the distribution
are to each other; i.e., whether the values are tightly clustered or spread over a wide range.

The standard deviation for a set of data describes the typical distance between an
observation and the mean. The distance of a single observation from the mean is its
deviation. Below are the deviations for the 1st , 2nd , 3rd , and 431st observations in the
clutch.volume variable.

x1 − x = 177.8− 882.5 = −704.7

x2 − x = 257.0− 882.5 = −625.5

x3 − x = 151.4− 882.5 = −731.1

...

x431 − x = 933.2− 882.5 = 50.7

29For computational convenience, the volumes are rounded to the first decimal.
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The sample variance, the average of the squares of these deviations, is denoted by s2: s2
sample
variance

s2 =
(−704.7)2 + (−625.5)2 + (−731.1)2 + · · ·+ (50.7)2

431− 1

=
496,602.09 + 391,250.25 + 534,507.21 + · · ·+ 2570.49

430
= 143,680.9

The denominator is n−1 rather than n; this mathematical nuance accounts for the fact that
sample mean has been used to estimate the population mean in the calculation. Details
on the statistical theory can be found in more advanced texts.

The sample standard deviation s is the square root of the variance:

s =
√

143,680.9 = 379.05mm3 s
sample
standard
deviation

Like the mean, the population values for variance and standard deviation are de-
noted by Greek letters: σ2 for the variance and σ for the standard deviation. σ2

population
variance

σ
population
standard
deviation

Standard Deviation

The sample standard deviation of a numerical variable is computed as the square
root of the variance, which is the sum of squared deviations divided by the num-
ber of observations minus 1.

s =

√
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

n− 1
(1.11)

where x1,x2, . . . ,xn represent the n observed values.

Variability can also be measured using the interquartile range (IQR). The IQR for
a distribution is the difference between the first and third quartiles: Q3 −Q1. The first
quartile (Q1) is equivalent to the 25th percentile; i.e., 25% of the data fall below this value.
The third quartile (Q3) is equivalent to the 75th percentile. By definition, the median
represents the second quartile, with half the values falling below it and half falling above.
The IQR for clutch.volume is 1096.0− 609.6 = 486.4 mm3.

Measures of center and spread are ways to summarize a distribution numerically.
Using numerical summaries allows for a distribution to be efficiently described with only
a few numbers.30 For example, the calculations for clutch.volume indicate that the typical
egg clutch has volume of about 880 mm3, while the middle 50% of egg clutches have
volumes between approximately 600 mm3 and 1100.0 mm3.

1.4.3 Robust estimates

Figure 1.15 shows the values of clutch.volume as points on a single axis. There are a few
values that seem extreme relative to the other observations: the four largest values, which
appear distinct from the rest of the distribution. How do these extreme values affect the
value of the numerical summaries?

30Numerical summaries are also known as summary statistics.
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Clutch Volumes

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700

Figure 1.15: Dot plot of clutch volumes from the frog data.

Table 1.16 shows the summary statistics calculated under two scenarios, one with
and one without the four largest observations. For these data, the median does not change,
while the IQR differs by only about 6 mm3. In contrast, the mean and standard deviation
are much more affected, particularly the standard deviation.

robust not robust
scenario median IQR x s
original data (with extreme observations) 831.8 486.9 882.5 379.1
data without four largest observations 831.8 493.9 867.9 349.2

Table 1.16: A comparison of how the median, IQR, mean (x), and standard
deviation (s) change when extreme observations are present.

The median and IQR are referred to as robust estimates because extreme observa-
tions have little effect on their values. For distributions that contain extreme values, the
median and IQR will provide a more accurate sense of the center and spread than the
mean and standard deviation.
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1.4.4 Visualizing distributions of data: histograms and boxplots

Graphs show important features of a distribution that are not evident from numerical
summaries, such as asymmetry or extreme values. While dot plots show the exact value
of each observation, histograms and boxplots graphically summarize distributions.

In a histogram, observations are grouped into bins and plotted as bars. Table 1.17
shows the number of clutches with volume between 0 and 200 mm3, 200 and 400 mm3,
etc. up until 2,600 and 2,800 mm3.31 These binned counts are plotted in Figure 1.18.

Clutch volumes 0-200 200-400 400-600 600-800 · · · 2400-2600 2600-2800

Count 4 29 69 99 · · · 2 1

Table 1.17: The counts for the binned clutch.volume data.
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Figure 1.18: A histogram of clutch.volume.

Histograms provide a view of the data density. Higher bars indicate more frequent
observations, while lower bars represent relatively rare observations. Figure 1.18 shows
that most of the egg clutches have volumes between 500-1,000 mm3, and there are many
more clutches with volumes smaller than 1,000 mm3 than clutches with larger volumes.

Histograms show the shape of a distribution. The tails of a symmetric distribution
are roughly equal, with data trailing off from the center roughly equally in both directions.
Asymmetry arises when one tail of the distribution is longer than the other. A distribution
is said to be right skewed when data trail off to the right, and left skewed when data trail
off to the left.32 Figure 1.18 shows that the distribution of clutch volume is right skewed;
most clutches have relatively small volumes, and only a few clutches have high volumes.

A mode is represented by a prominent peak in the distribution.33 Figure 1.19 shows

31By default in R, the bins are left-open and right-closed; i.e., the intervals are of the form (a, b]. Thus, an
observation with value 200 would fall into the 0-200 bin instead of the 200-400 bin.

32Other ways to describe data that are skewed to the right/left: skewed to the right/left or skewed to the
positive/negative end.

33Another definition of mode, which is not typically used in statistics, is the value with the most occurrences.
It is common that a dataset contains no observations with the same value, which makes this other definition
impractical for many datasets.
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histograms that have one, two, or three major peaks. Such distributions are called uni-
modal, bimodal, and multimodal, respectively. Any distribution with more than two
prominent peaks is called multimodal. Note that the less prominent peak in the uni-
modal distribution was not counted since it only differs from its neighboring bins by a
few observations. Prominent is a subjective term, but it is usually clear in a histogram
where the major peaks are.
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Figure 1.19: From left to right: unimodal, bimodal, and multimodal dis-
tributions.

A boxplot indicates the positions of the first, second, and third quartiles of a distribu-
tion in addition to extreme observations.34 Figure 1.20 shows a boxplot of clutch.volume
alongside a vertical dot plot.
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Figure 1.20: A boxplot and dot plot of clutch.volume. The horizontal
dashes indicate the bottom 50% of the data and the open circles represent
the top 50%.

In a boxplot, the interquartile range is represented by a rectangle extending from the
first quartile to the third quartile, and the rectangle is split by the median (second quar-

34Boxplots are also known as box-and-whisker plots.
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tile). Extending outwards from the box, the whiskers capture the data that fall between
Q1−1.5× IQR and Q3 + 1.5× IQR. The whiskers must end at data points; the values given
by adding or subtracting 1.5× IQR define the maximum reach of the whiskers. For exam-
ple, with the clutch.volume variable,Q3 +1.5×IQR = 1,096.5+1.5×486.4 = 1,826.1 mm3.
However, there was no clutch with volume 1,826.1 mm3; thus, the upper whisker extends
to 1,819.7 mm3, the largest observation that is smaller than Q3 + 1.5× IQR.

Any observation that lies beyond the whiskers is shown with a dot; these observations
are called outliers. An outlier is a value that appears extreme relative to the rest of the
data. For the clutch.volume variable, there are several large outliers and no small outliers,
indicating the presence of some unusually large egg clutches.

The high outliers in Figure 1.20 reflect the right-skewed nature of the data. The right
skew is also observable from the position of the median relative to the first and third
quartiles; the median is slightly closer to the first quartile. In a symmetric distribution,
the median will be halfway between the first and third quartiles.⊙

Guided Practice 1.12 Use the histogram and boxplot in Figure 1.21 to describe the
distribution of height in the famuss data, where height is measured in inches.35
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Figure 1.21: A histogram and boxplot of height in the famuss data.

1.4.5 Transforming data

When working with strongly skewed data, it can be useful to apply a transformation,
and rescale the data using a function. A natural log transformation is commonly used to
clarify the features of a variable when there are many values clustered near zero and all
observations are positive.

For example, income data are often skewed right; there are typically large clusters of
low to moderate income, with a few large incomes that are outliers. Figure 1.22(a) shows a
histogram of average yearly per capita income measured in US dollars for 165 countries in

35The data are roughly symmetric (the left tail is slightly longer than the right tail), and the distribution is
unimodal with one prominent peak at about 67 inches. The middle 50% of individuals are between 5.5 feet and
just under 6 feet tall. There is one low outlier and one high outlier, representing individuals that are unusually
short/tall relative to the other individuals.
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Figure 1.22: (a) Histogram of per capita income. (b) Histogram of the
log-transformed per capita income.

2011.36 The data are heavily right skewed, with the majority of countries having average
yearly per capita income lower than $10,000. Once the data are log-transformed, the
distribution becomes roughly symmetric (Figure 1.22(b)).37

For symmetric distributions, the mean and standard deviation are particularly in-
formative summaries. If a distribution is symmetric, approximately 70% of the data are
within one standard deviation of the mean and 95% of the data are within two standard
deviations of the mean; this guideline is known as the empirical rule.

 Example 1.13 On the log-transformed scale, mean log income is 8.50, with stan-
dard deviation 1.54. Apply the empirical rule to describe the distribution of average
yearly per capita income among the 165 countries.

According to the empirical rule, the middle 70% of the data are within one standard
deviation of the mean, in the range (8.50 - 1.54, 8.50 + 1.54) = (6.96, 10.04) log(USD).
95% of the data are within two standard deviations of the mean, in the range (8.50 -
2(1.54), 8.50 + 2(1.54)) = (5.42, 11.58) log(USD).

Undo the log transformation. The middle 70% of the data are within the range (e6.96,
e10.04) = ($1,054, $22,925). The middle 95% of the data are within the range (e5.42,
e11.58) = ($226, $106,937).

Functions other than the natural log can also be used to transform data, such as the
square root and inverse.

36The data are available as wdi.2011 in the R package oibiostat.
37In statistics, the natural logarithm is usually written log. In other settings it is sometimes written as ln.
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1.5 Categorical data

This section introduces tables and plots for summarizing categorical data, using the famuss
dataset introduced in Section 1.2.2.

A table for a single variable is called a frequency table. Table 1.23 is a frequency
table for the actn3.r577x variable, showing the distribution of genotype at location r577x
on the ACTN3 gene for the FAMuSS study participants.

In a relative frequency table like Table 1.24, the proportions per each category are
shown instead of the counts.

CC CT TT Sum
Counts 173 261 161 595

Table 1.23: A frequency table for the actn3.r577x variable.

CC CT TT Sum
Proportions 0.291 0.439 0.271 1.000

Table 1.24: A relative frequency table for the actn3.r577x variable.

A bar plot is a common way to display a single categorical variable. The left panel of
Figure 1.25 shows a bar plot of the counts per genotype for the actn3.r577x variable. The
plot in the right panel shows the proportion of observations that are in each level (i.e. in
each genotype).
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Figure 1.25: Two bar plots of actn3.r577x. The left panel shows the
counts, and the right panel shows the proportions for each genotype.
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1.6 Relationships between two variables

This section introduces numerical and graphical methods for exploring and summarizing
relationships between two variables. Approaches vary depending on whether the two
variables are both numerical, both categorical, or whether one is numerical and one is
categorical.

1.6.1 Two numerical variables

Scatterplots

In the frog parental investment study, researchers used clutch volume as a primary vari-
able of interest rather than egg size because clutch volume represents both the eggs and
the protective gelatinous matrix surrounding the eggs. The larger the clutch volume, the
higher the energy required to produce it; thus, higher clutch volume is indicative of in-
creased maternal investment. Previous research has reported that larger body size allows
females to produce larger clutches; is this idea supported by the frog data?

A scatterplot provides a case-by-case view of the relationship between two numerical
variables. Figure 1.26 shows clutch volume plotted against body size, with clutch volume
on the y-axis and body size on the x-axis. Each point represents a single case. For this
example, each case is one egg clutch for which both volume and body size (of the female
that produced the clutch) have been recorded.
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Figure 1.26: A scatterplot showing clutch.volume (vertical axis) vs.
body.size (horizontal axis).

The plot shows a discernible pattern, which suggests an association, or relationship,
between clutch volume and body size; the points tend to lie in a straight line, which is
indicative of a linear association. Two variables are positively associated if increasing
values of one tend to occur with increasing values of the other; two variables are neg-
atively associated if increasing values of one variable occurs with decreasing values of
the other. If there is no evident relationship between two variables, they are said to be
uncorrelated or independent.

As expected, clutch volume and body size are positively associated; larger frogs tend
to produce egg clutches with larger volumes. These observations suggest that larger fe-
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males are capable of investing more energy into offspring production relative to smaller
females.

The National Health and Nutrition Examination Survey (NHANES) consists of a set
of surveys and measurements conducted by the US CDC to assess the health and nutri-
tional status of adults and children in the United States. The following example uses data
from a sample of 500 adults (individuals ages 21 and older) from the NHANES dataset.38

 Example 1.14 Body mass index (BMI) is a measure of weight commonly used by
health agencies to assess whether someone is overweight, and is calculated from
height and weight.39 Describe the relationships shown in Figure ??. Why is it helpful
to use BMI as a measure of obesity, rather than weight?

Figure 1.27(a) shows a positive association between height and weight; taller indi-
viduals tend to be heavier. Figure 1.27(b) shows that height and BMI do not seem to
be associated; the range of BMI values observed is roughly consistent across height.

Weight itself is not a good measure of whether someone is overweight; instead, it is
more reasonable to consider whether someone’s weight is unusual relative to other
individuals of a comparable height. An individual weighing 200 pounds who is
6 ft tall is not necessarily an unhealthy weight; however, someone who weighs 200
pounds and is 5 ft tall is likely overweight. It is not reasonable to classify individuals
as overweight or obese based only on weight.

BMI acts as a relative measure of weight that accounts for height. Specifically, BMI
is used as an estimate of body fat. According to US National Institutes of Health
(US NIH) and the World Health Organization (WHO), a BMI between 25.0 - 29.9 is
considered overweight and a BMI over 30 is considered obese.40

 Example 1.15 Figure 1.28 is a scatterplot of life expectancy versus annual per
capita income for 165 countries in 2011. Life expectancy is measured as the ex-
pected lifespan for children born in 2011 and income is adjusted for purchasing
power in a country. Describe the relationship between life expectancy and annual
per capita income; do they seem to be linearly associated?

Life expectancy and annual per capita income are positively associated; higher per
capita income is associated with longer life expectancy. However, the two variables
are not linearly associated. When income is low, small increases in per capita in-
come are associated with relatively large increases in life expectancy. However, once
per capita income exceeds approximately $20,000 per year, increases in income are
associated with smaller gains in life expectancy.

In a linear association, change in the y-variable for every unit of the x-variable is
consistent across the range of the x-variable; for example, a linear association would
be present if an increase in income of $10,000 corresponded to an increase in life
expectancy of 5 years, across the range of income.

38The sample are available as nhanes.samp.adult.500 in the R oibiostat package.

39BMI =
weightkg

height2m
=
weightlb
height2in

× 703

40https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm

https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm
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Figure 1.27: (a) A scatterplot showing height versus weight from the 500
individuals in the sample from NHANES. One participant 163.9 cm tall
(about 5 ft, 4 in) and weighing 144.6 kg (about 319 lb) is highlighted.
(b) A scatterplot showing height versus BMI from the 500 individuals in
the sample from NHANES. The same individual highlighted in (a) is marked
here, with BMI 53.83.

Correlation

Correlation is a numerical summary statistic that measures the strength of a linear re-
lationship between two variables. It is denoted by r, the correlation coefficient, whichr

correlation
coefficient

takes on values between -1 and 1.
If the paired values of two variables lie exactly on a line, r = ±1; the closer the corre-

lation coefficient is to ±1, the stronger the linear association. When two variables are pos-
itively associated, with paired values that tend to lie on a line with positive slope, r > 0.
If two variables are negatively associated, r < 0. A value of r that is 0 or approximately 0
indicates no apparent association between two variables.41

41If paired values lie perfectly on either a horizontal or vertical line, there is no association and r is mathe-
matically undefined.
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Figure 1.28: A scatterplot of life expectancy (years) versus annual per
capita income (US dollars) in the wdi.2011 dataset.

The correlation coefficient quantifies the strength of a linear trend. Prior to calcu-
lating a correlation, it is advisable to confirm that the data exhibit a linear relationship.
Although it is mathematically possible to calculate correlation for any set of paired obser-
vations, such as the life expectancy versus income data in Figure 1.28, correlation cannot
be used to assess the strength of a nonlinear relationship.

Correlation

The correlation between two variables x and y is given by:

r =
1

n− 1

n∑
i=1

(
xi − x
sx

)(
yi − y
sy

)
(1.16)

where (x1, y1), (x2, y2), . . . , (xn, yn) are the n paired values of x and y, and sx and sy
are the sample standard deviations of the x and y variables, respectively.

 Example 1.17 Calculate the correlation coefficient of x and y, plotted in Figure 1.30.

Calculate the mean and standard deviation for x and y: x = 2, y = 3, sx = 1, and
sy = 2.65.

r =
1

n− 1

n∑
i=1

(
xi − x
sx

)(
yi − y
sy

)
=

1
3− 1

[(1− 2
1

)(5− 3
2.65

)
+
(2− 2

1

)(4− 3
2.65

)
+
(3− 2

1

)(0− 3
2.65

)]
= −0.94

The correlation is -0.94, which reflects the negative association visible from the scat-
terplot in Figure 1.30.
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R = 0.33

y

R = 0.69
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R = −1.00

Figure 1.29: Scatterplots and their correlation coefficients. The first row
shows positive associations and the second row shows negative associa-
tions. From left to right, strength of the linear association between x and
y increases.

 Example 1.18 Is it appropriate to use correlation as a numerical summary for the
relationship between life expectancy and income after a log transformation is ap-
plied to both variables? Refer to Figure 1.31.

Figure 1.31 shows an approximately linear relationship; a correlation coefficient is
a reasonable numerical summary of the relationship. As calculated from statistical
software, r = 0.79, which is indicative of a strong linear relationship.

1.6.2 Two categorical variables

Contingency tables

A contingency table summarizes data for two categorical variables, with each value in the
table representing the number of times a particular combination of outcomes occurs.42

Table 1.32 summarizes the relationship between race and genotype in the famuss data.
The row totals provide the total counts across each row and the column totals are

the total counts for each column; collectively, these are the marginal totals.
Like relative frequency tables for the distribution of one categorical variable, contin-

gency tables can also be converted to show proportions. Since there are two variables, it is
necessary to specify whether the proportions are calculated according to the row variable
or the column variable.

Table 1.33 shows the row proportions for Table 1.32; these proportions indicate how
genotypes are distributed within each race. For example, the value of 0.593 in the up-
per left corner indicates that of the African Americans in the study, 59.3% have the CC
genotype.

42Contingency tables are also known as two-way tables.
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Figure 1.31: A scatterplot showing log(income) (horizontal axis) vs.
log(life.expectancy) (vertical axis).

Table 1.34 shows the column proportions for Table 1.32; these proportions indicate
the distribution of races within each genotype category. For example, the value of 0.092
indicates that of the CC individuals in the study, 9.2% are African American.

 Example 1.19 For African Americans in the study, CC is the most common geno-
type and TT is the least common genotype. Does this pattern hold for the other
races in the study? Do the observations from the study suggest that distribution of
genotypes at r577x vary between populations?

The pattern holds for Asians, but not for other races. For the Caucasian individuals
sampled in the study, CT is the most common genotype at 46.3%. CC is the most
common genotype for Asians, but in this population, genotypes are more evenly
distributed: 38.2% of Asians sampled are CC, 32.7% are CT, and 29.1% are TT. The
distribution of genotypes at r577x seems to vary by population.⊙
Guided Practice 1.20 As shown in Table 1.34, 72.3% of CC individuals in the
study are Caucasian. Do these data suggest that in the general population, people of
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CC CT TT Sum
African Am 16 6 5 27

Asian 21 18 16 55
Caucasian 125 216 126 467

Hispanic 4 10 9 23
Other 7 11 5 23

Sum 173 261 161 595

Table 1.32: A contingency table for race and actn3.r577x.

CC CT TT Sum
African Am 0.593 0.222 0.185 1.000

Asian 0.382 0.327 0.291 1.000
Caucasian 0.268 0.463 0.270 1.000

Hispanic 0.174 0.435 0.391 1.000
Other 0.304 0.478 0.217 1.000

Table 1.33: A contingency table with row proportions for the race and
actn3.r577x variables.

CC genotype are highly likely to be Caucasian?43

Segmented bar plots

A segmented bar plot is a way of visualizing the information from a contingency table.
Figure 1.35 graphically displays the data from Table 1.32; each bar represents a level of
actn3.r577x and is divided by the levels of race. Figure 1.35(b) uses the row proportions
to create a standardized segmented bar plot.
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Figure 1.35: (a) Segmented bar plot for individuals by genotype, with bars
divided by race. (b) Standardized version of Figure (a).

Alternatively, the data can be organized as shown in Figure 1.36, with each bar repre-
senting a level of race. The standardized plot is particularly useful in this case, presenting
the distribution of genotypes within each race more clearly than in Figure 1.36(a).

43No, this is not a reasonable conclusion to draw from the data. The high proportion of Caucasians among
CC individuals primarily reflects the large number of Caucasians sampled in the study – 78.5% of the people
sampled are Caucasian. The uneven representation of different races is one limitation of the famuss data.
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CC CT TT
African Am 0.092 0.023 0.031

Asian 0.121 0.069 0.099
Caucasian 0.723 0.828 0.783

Hispanic 0.023 0.038 0.056
Other 0.040 0.042 0.031

Sum 1.000 1.000 1.000

Table 1.34: A contingency table with column proportions for the race and
actn3.r577x variables.
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Figure 1.36: (a) Segmented bar plot for individuals by race, with bars di-
vided by genotype. (b) Standardized version of Figure (a).

Two-by-two tables: relative risk

The results from medical studies are often presented in two-by-two tables (2 × 2 tables),
contingency tables for categorical variables that have two levels. One of the variables
defines two groups of participants, while the other represents the two possible outcomes.
Table 1.37 shows a hypothetical two-by-two table of outcome by group.

In the LEAP study, participants are divided into two groups based on treatment
(peanut avoidance versus peanut consumption), while the outcome variable records whether
an individual passed or failed the oral food challenge (OFC). The results of the LEAP study
as shown in Table 1.2 are in the form of a 2 × 2 table; the table is reproduced below as
Table 1.38.

A statistic called the relative risk (RR) can be used to summarize the data in a 2 × 2
table; the relative risk is a measure of the risk of a certain event occurring in one group
relative to the risk of the event occurring in another group.44

44Chapter 8 discusses another numerical summary for 2 × 2 tables, the odds ratio.

Outcome A Outcome B Sum
Group 1 a b a+ b
Group 2 c d c+ d

Sum a+ c b+ d a+ b+ c+ d = n

Table 1.37: A hypothetical two-by-two table of outcome by group.
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FAIL OFC PASS OFC Sum
Peanut Avoidance 36 227 263

Peanut Consumption 5 262 267
Sum 41 489 530

Table 1.38: Results of the LEAP study, described in Section 1.1.

The question of interest in the LEAP study is whether the risk of developing peanut
allergy (i.e., failing the OFC) differs between the peanut avoidance and consumption
groups. The relative risk of failing the OFC equals the ratio of the proportion of indi-
viduals in the avoidance group who failed the OFC to the proportion of individuals in the
consumption group who failed the OFC.

 Example 1.21 Using the results from the LEAP study, calculate and interpret the
relative risk of failing the oral food challenge, comparing individuals in the avoid-
ance group to individuals in the consumption group.

RRfailing OFC =
proportion in avoidance group who failed OFC

proportion in consumption group who failed OFC
=

36/263
5/267

= 7.31

The relative risk is 7.31. The risk of failing the oral food challenge was more than
7 times greater for participants in the peanut avoidance group than for those in the
peanut consumption group.

 Example 1.22 An observational study is conducted to assess the association be-
tween smoking and cardiovascular disease (CVD), in which researchers identified a
cohort of individuals and categorized them according to smoking and disease sta-
tus. If the relative risk of CVD is calculated as the ratio of the proportion of smokers
with CVD to the proportion of non-smokers with CVD, interpret the results of the
study if the relative risk equals 1, is less than 1, or greater than 1.

A relative risk of 1 indicates that the risk of CVD is equal for smokers and non-
smokers.

A relative risk less than 1 indicates that smokers are at a lower risk of CVD than
non-smokers; i.e., the proportion of individuals with CVD among smokers is lower
than the proportion among non-smokers.

A relative risk greater than 1 indicates that smokers are at a higher risk of CVD than
non-smokers; i.e., the proportion of individuals with CVD among smokers is higher
than the proportion among non-smokers.⊙
Guided Practice 1.23 For the study described in Example 1.22, suppose that of the
231 individuals, 111 are smokers. 40 smokers and 32 non-smokers have cardiovas-
cular disease. Calculate and interpret the relative risk of CVD.45

45The relative risk of CVD, comparing smokers to non-smokers, is (40/111)/(32/120) = 1.35. Smoking is
associated with a 35% increase in the probability of CVD; in other words, the risk of CVD is 35% greater in
smokers compared to non-smokers.
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Relative risk relies on the assumption that the observed proportions of an event oc-
curring in each group are representative of the risk, or incidence, of the event occurring
within the populations from which the groups are sampled. For example, in the LEAP
data, the relative risk assumes that the proportions 33/263 and 5/267 are estimates of the
proportion of individuals who would fail the OFC among the larger population of infants
who avoid or consume peanut products.

 Example 1.24 Suppose another study to examine the association between smoking
and cardiovascular disease is conducted, but researchers use a different study design
than described in Example 1.22. For the new study, 90 individuals with CVD and
110 individuals without CVD are recruited. 40 of the individuals with CVD are
smokers, and 80 of the individuals without CVD are non-smokers. Should relative
risk be used to summarize the observations from the new study?

Relative risk should not be calculated for these observations. Since the number of
individuals with and without CVD is fixed by the study design, the proportion of in-
dividuals with CVD within a certain group (smokers or non-smokers) as calculated
from the data is not a measure of CVD risk for that population.⊙
Guided Practice 1.25 For a study examining the association between tea consump-
tion and esophageal carcinoma, researchers recruited 300 patients with carcinoma
and 571 without carcinoma and administered a questionnaire about tea drinking
habits.46 Of the 47 individuals who reported that they regularly drink green tea, 17
had carcinoma. Of the 824 individuals who reported that they never, or very rarely,
drink green tea, 283 had carcinoma. Evaluate whether the proportions 17/47 and
283/824 are representative of the incidence rate of carcinoma among individuals
who drink green tea regularly and those who do not.47

Relative risk

The relative risk of Outcome A in the hypothetical two-by-two table (Table 1.37)
can be calculated using either Group 1 or Group 2 as the reference group:

RRA, comparing Group 1 to Group 2 =
a/(a+ b)
c/(c+ d)

RRA, comparing Group 2 to Group 1 =
c/(c+ d)
a/(a+ b)

The relative risk should only be calculated for data where the proportions a/(a+b)
and c/(c + d) represent the incidence of Outcome A within the populations from
which Groups 1 and 2 are sampled.

46Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based caseÂŋ-
control study, Islami F, et al., BMJ (2009), doi 10.1136/bmj.b929

47The proportions calculated from the study data should not be used as estimates of the incidence rate of
esophageal carcinoma among individuals who drink green tea regularly and those who do not, since the study
selected participants based on carcinoma status.

10.1136/bmj.b929
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1.6.3 A numerical variable and a categorical variable

Methods for comparing numerical data across groups are based on the approaches in-
troduced in Section 1.4. Side-by-side boxplots and hollow histograms are useful for
directly comparing how the distribution of a numerical variable differs by category.
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Figure 1.39: Side-by-side boxplot and hollow histograms for ndrm.ch, split
by levels of actn3.r577x.

Recall the question introduced in Section 1.2.3: is ACTN3 genotype associated with
variation in muscle function? Figure 1.39 visually shows the relationship between muscle
function (measured as percent change in non-dominant arm strength) and ACTN3 geno-
type in the famuss data with side-by-side boxplots and hollow histograms. The hollow
histograms highlight how the shapes of the distributions of ndrm.ch for each genotype
are essentially similar, although the distribution for the CC genotype has less right skew-
ing. The side-by-side boxplots are especially useful for comparing center and spread, and
reveal that the T allele appears to be associated with greater muscle function; median
percent change in non-dominant arm strength increases across the levels from CC to TT.⊙

Guided Practice 1.26 Using Figure 1.40, assess how maternal investment varies
with altitude.48

48As a general rule, clutches found at higher altitudes have greater volume; median clutch volume tends to
increase as altitude increases. This suggests that increased altitude is associated with a higher level of maternal
investment.
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Figure 1.40: Side-by-side boxplot comparing the distribution of
clutch.volume for different altitudes.

1.7 Exploratory data analysis

The simple techniques for summarizing and visualizing data that have been introduced
in this chapter may not seem especially powerful, but when applied in practice, they
can be instrumental for gaining insight into the interesting features of a dataset. This
section provides three examples of data-driven research questions that can be investigated
through exploratory data analysis.

1.7.1 Case study: discrimination in developmental disability support

In the United States, individuals with developmental disabilities typically receive ser-
vices and support from state governments. The State of California allocates funds to
developmentally-disabled residents through the California Department of Developmen-
tal Services (DDS); individuals receiving DDS funds are referred to as ’consumers’. The
dataset dds.discr represents a sample of 1,000 DDS consumers (out of a total population
of approximately 250,000), and includes information about age, gender, ethnicity, and the
amount of financial support per consumer provided by the DDS.49 Table 1.41 shows the
first five rows of the dataset, and the variables are described in Table 1.42.

A team of researchers examined the mean annual expenditures on consumers by
ethnicity, and found that the mean annual expenditures on Hispanic consumers was ap-
proximately one-third of the mean expenditures on White non-Hispanic consumers. As a
result, an allegation of ethnic discrimination was brought against the California DDS.

Does this finding represent sufficient evidence of ethnic discrimination, or might
there be more to the story? This section will illustrate the process behind conducting an

49The dataset is based on actual attributes of consumers, but has been altered to maintain consumer privacy.
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exploratory analysis that not only investigates the relationship between two variables of
interest, but also considers whether other variables might be influencing that relationship.

id age.cohort age gender expenditures ethnicity
1 10210 13-17 17 Female 2113 White not Hispanic
2 10409 22-50 37 Male 41924 White not Hispanic
3 10486 0-5 3 Male 1454 Hispanic
4 10538 18-21 19 Female 6400 Hispanic
5 10568 13-17 13 Male 4412 White not Hispanic

Table 1.41: Five rows from the dds.discr data matrix.

variable description
id Unique identification code for each resident
age.cohort Age as sorted into six groups, 0-5 years, 6-12 years, 13-17 years, 18-21 years,

22-50 years, and 51+ years
age Age, measured in years
gender Gender, either Female or Male
expenditures Amount of expenditures spent by the State on an individual annually, mea-

sured in USD
ethnicity Ethnic group, recorded as either American Indian, Asian, Black, Hispanic,

Multi Race, Native Hawaiian, Other, or White Not Hispanic

Table 1.42: Variables and their descriptions for the dds.discr dataset.

Distributions of single variables

To begin understanding a dataset, start by examining the distributions of single vari-
ables using numerical and graphical summaries. This process is essential for develop-
ing a sense of context; in this case, examining variables individually addresses questions
such as "What is the range of annual expenditures?", "Do consumers tend to be older or
younger?", and "Are there more consumers from one ethnic group versus another?".

Figure 1.43 illustrates the right skew of expenditures, indicating that for the majority
of consumers, expenditures are relatively low; most are within the $0 - $5,000 range.
There are some consumers for which expenditures are much higher, such as within the
$60,000 - $80,000 range. Precise numerical summaries can be calculated using statistical
software: the quartiles for expenditures are $2,899, $7,026, and $37,710.

A consumer’s age is directly recorded as the variable age; in the age.cohort variable,
consumers are assigned to one of six age cohorts. The cohorts are indicative of particular
life phases. In the first three cohorts, consumers are still living with their parents as they
move through preschool age, elementary/middle school age, and high school age. In the
18-21 cohort, consumers are transitioning from their parents’ homes to living on their
own or in supportive group homes. From ages 22-50, individuals are mostly no longer
living with their parents but may still receive some support from family. In the 51+ cohort,
consumers often have no living parents and typically require the most amount of support.

Figure 1.44 reveals the right-skewing of age. Most consumers are younger than 30.
The plot in Figure 1.44(b) graphically shows the number of individuals in each age cohort.
There are approximately 200 individuals in each of the middle four cohorts, while there
are about 100 individuals in the other two cohorts.
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Figure 1.43: A histogram of expenditures.
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Figure 1.44: (a) Histogram of age. (b) Plot of age.cohort.

There are eight ethnic groups represented in dds.discr. The two largest groups,
Hispanic and White non-Hispanic, together represent about 80% of the consumers.⊙

Guided Practice 1.27 Using Figure 1.46, does gender appear to be balanced in the
dds.discr dataset?50

Relationships between two variables

After examining variables individually, explore how variables are related to each other.
While there exist methods for summarizing more than two variables simultaneously, fo-
cusing on two variables at a time can be surprisingly effective for making sense of a
dataset. It is useful to begin by investigating the relationships between the primary re-
sponse variable of interest and the exploratory variables. In this case study, the response
variable is expenditures, the amount of funds the DDS allocates annually to each con-
sumer. How does expenditures vary by age, ethnicity, and gender?

Figure 1.47 shows a side-by-side boxplot of expenditures by age cohort. There is
a clear upward trend, in which older individuals tend to receive more DDS funds. This
reflects the underlying context of the data. The purpose of providing funds to develop-
mentally disabled individuals is to help them maintain a quality of life similar to those

50Yes, approximately half of the individuals are female and half are male.
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Figure 1.45: A plot of ethnicity.
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Figure 1.46: A plot of gender.

without disabilities; as individuals age, it is expected their financial needs will increase.
Some of the observed variation in expenditures can be attributed to the fact that the
dataset includes a wide range of ages. If the data included only individuals in one cohort,
such as the 22-50 cohort, the distribution of expenditures would be less variable, and
range between $30,000 and $60,000 instead of from $0 and $80,000.

How does the distribution of expenditures vary by ethnic group? Does there seem to
be a difference in the amount of funding that a person receives, on average, between differ-
ent ethnicities? A side-by-side boxplot of expenditures by ethnicity (Figure 1.48) reveals
that the distribution of expenditures is quite different between ethnic groups. For exam-
ple, there is very little variation in expenditures for the Multi Race, Native Hawaiian, and
Other groups. Additionally, the median expenditures are not the same between groups;
the medians for American Indian and Native Hawaiian individuals are about $40,000, as
compared to medians of approximately $10,000 for Asian and Black consumers.

The trend visible in Figure 1.48 seems potentially indicative of ethnic discrimination.
Before proceeding with the analysis, however, it is important to take into account the fact
that two of the groups, Hispanic and White non-Hispanic, comprise the majority of the
data; some ethnic groups represent less than 10% of the observations (Figure 1.45). For
ethnic groups with relatively small sample sizes, it is possible that the observed samples
are not representative of the larger populations. The rest of this analysis will focus on
comparing how expenditures varies between the two largest groups, White non-Hispanic
and Hispanic.⊙

Guided Practice 1.28 Using Figure 1.49, do annual expenditures seem to vary by
gender?51

51No, the distribution of expenditures within males and females is very similar; both are right skewed, with
approximately equal median and interquartile range.
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Figure 1.47: A plot of expenditures by age.cohort.

Figure 1.50 compares the distribution of expenditures between Hispanic and White
non-Hispanic consumers. Most Hispanic consumers receive between about $0 to $20,000
from the California DDS; individuals receiving amounts higher than this are upper out-
liers. However, for White non-Hispanic consumers, median expenditures is at $20,000,
and the middle 50% of consumers receive between $5,000 and $40,000. The precise sum-
mary statistics can be calculated from computing software, as shown in the corresponding
R lab. The mean expenditures for Hispanic consumers is $11,066, while the mean expen-
ditures for White non-Hispanic consumers is over twice as large at $24,698. On average, a
Hispanic consumer receives less financial support from the California DDS than a White
non-Hispanic consumer. Does this represent evidence of discrimination?

Recall that expenditures is strongly associated with age—older individuals tend to
receive more financial support. Is there also an association between age and ethnicity,
for these two ethnic groups? When using data to investigate a question, it is important
to explore not only how explanatory variables are related to the response variable(s), but
also how explanatory variables influence each other.

Figure 1.51 and Table 1.52 show the distribution of age within Hispanics and White
non-Hispanics. Hispanics tend to be younger, with most Hispanic consumers falling into
the 6-12, 13-17, and 18-21 age cohorts. In contrast, White non-Hispanics tend to be older;
most consumers in this group are in the 22-50 age cohort, and relatively more White non-
Hispanic consumers are in the 51+ age cohort as compared to Hispanics.

Recall that a confounding variable is a variable that is associated with the response
variable and the explanatory variable under consideration; confounding was initially in-
troduced in the context of sunscreen use and incidence of skin cancer, where sun expo-
sure is a confounder. In this setting, age is a confounder for the relationship between
expenditures and ethnicity. Just as it would be incorrect to claim that sunscreen causes
skin cancer, it is essential here to recognize that there is more to the story than the appar-
ent association between expenditures and ethnicity.
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Figure 1.48: A plot of expenditures by ethnicity.
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Figure 1.49: A plot of expenditures by gender.

For a closer look at the relationship between age, ethnicity, and expenditures, subset
the data further to compare how expenditures differs by ethnicity within each age cohort.
If age is indeed the primary source of the observed variation in expenditures, then there
should be little difference in average expenditures between individuals in different ethnic
groups but the same age cohort.

Table 1.53 shows the average expenditures within each age cohort, for Hispanics ver-
sus White non-Hispanics. The last column contains the difference between the two aver-
ages (calculated as White Non-Hispanics average - Hispanics average).

When expenditures is compared within age cohorts, there are not large differences
between mean expenditures for White non-Hispanics versus Hispanics. Comparing indi-
viduals of similar ages reveals that the association between ethnicity and expenditures is
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Figure 1.50: A plot of expenditures by ethnicity, showing only Hispanics
and White Non-Hispanics.
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Figure 1.51: (a) Plot of age.cohort within Hispanics. (b) Plot of
age.cohort within White non-Hispanics.

not nearly as strong as it seemed from the initial comparison of overall averages.

Instead, it is the difference in age distributions of the two populations that is driving
the observed discrepancy in expenditures. The overall average of expenditures for the
Hispanic consumers is lower because the population of Hispanic consumers is relatively
young compared to the population of White non-Hispanic consumers, and the amount of
expenditures for younger consumers tends to be lower than for older consumers. Based
on an exploratory analysis that accounts for age as a confounding variable, there does not
seem to be evidence of ethnic discrimination.

Identifying confounding variables is essential for understanding data. Confounders
are often context-specific; for example, age is not necessarily a confounder for the rela-
tionship between ethnicity and expenditures in a different population. Additionally, it
is rarely immediately obvious which variables in a dataset are confounders; looking for
confounding variables is an integral part of exploring a dataset.

Chapter ?? introduces multiple linear regression, a method that can directly summa-
rize the relationship between ethnicity, expenditures, and age, in addition to the tools for
evaluating whether the observed discrepancies within age cohorts are greater than would
be expected by chance variation alone.



52 CHAPTER 1. INTRODUCTION TO DATA

Age Cohort Hispanic White Non-Hispanic
0-5 44/376 = 12% 20/401 = 5%
6-12 91/376 = 24% 46/401 = 11%
13-17 103/376 = 27% 67/401 = 17%
18-21 78/376 = 21% 69/401 = 17%
22-50 43/376 = 11% 133/401 = 33%
51+ 17/376 = 5% 66/401 = 16%
Sum 376/376 = 100% 401/401 = 100%

Table 1.52: Consumers by ethnicity and age cohort, shown both as counts
and proportions.

Age Cohort Hispanics White non-Hispanics Difference
0-5 1,393 1,367 -26
6-12 2,312 2,052 -260
13-17 3,955 3,904 -51
18-21 9,960 10,133 173
22-50 40,924 40,188 -736
51+ 55,585 52,670 -2915
Average 11,066 24,698 13,632

Table 1.53: Average expenditures by ethnicity and age cohort, in USD ($).
For all age cohorts except 18-21 years, average expenditures for White
non-Hispanics is lower than for Hispanics.

Simpson’s paradox

These data represent an extreme example of confounding known as Simpson’s paradox,
in which an association observed in several groups may disappear or reverse direction
once the groups are combined. In other words, an association between two variables X
and Y may disappear or reverse direction once data are partitioned into subpopulations
based on a third variable Z (i.e., a confounding variable).

Table 1.53 shows how mean expenditures is higher for Hispanics than White non-
Hispanics in all age cohorts except one. Yet, once all the data are aggregated, the average
expenditures for White non-Hispanics is over twice as large as the average for Hispanics.
The paradox can be explored from a mathematical perspective by using weighted aver-
ages, where the average expenditure for each cohort is weighted by the proportion of the
population in that cohort.

 Example 1.29 Using the proportions in Table 1.52 and the average expenditures
for each cohort in Table 1.53, calculate the overall weighted average expenditures
for Hispanics and for White non-Hispanics.52

For Hispanics:

1,393(.12)+2,312(.24)+3,955(.27)+9,960(.21)+40,924(.11)+55,585(.05) = $11,162

For White non-Hispanics:

1,367(0.05)+2,052(.11)+3,904(.17)+10,133(.17)+40,188(.33)+52,760(.16) = $24,384
52Due to rounding, the overall averages calculated via this method will not exactly equal $11,066 and

$24,698.
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The weights for the youngest four cohorts, which have lower expenditures, are higher
for the Hispanic population than the White non-Hispanic population; additionally,
the weights for the oldest two cohorts, which have higher expenditures, are higher
for the White non-Hispanic population. This leads to overall average expenditures
for the White non-Hispanics being higher than for Hispanics.

1.7.2 Case study: molecular cancer classification

The genetic code stored in DNA contains the necessary information for producing the
proteins that ultimately determine an organism’s observable traits (phenotype). Although
nearly every cell in an organism contains the same genes, cells may exhibit different pat-
terns of gene expression. Not only can genes be switched on or off in certain tissues, but
they can also be expressed at varying levels. These variations in gene expression underlie
the wide range of physical, biochemical, and developmental differences that characterize
specific cells and tissues.

Originally, scientists were limited to monitoring the expression of only a single gene
at a time. The development of microarray technology in the 1990’s made it possible to
examine the expression of thousands of genes simultaneously. While newer genomic tech-
nologies have started to replace microarrays for gene expression studies, microarrays con-
tinue to remain clinically relevant as a tool for genetic diagnosis. For example, a 2002
study examined the effectiveness of gene expression profiling as a tool for predicting dis-
ease outcome in breast cancer patients, reporting that the expression data from 70 genes
constituted a more powerful predictor of survival than standard systems based on clinical
criteria.53

This section introduces the principles behind DNA microarrays and discusses the
1999 Golub leukemia study, which represents one of the earliest applications of microar-
ray technology for diagnostic purposes.

DNA microarrays

Microarray technology is based on hybridization, a basic property of nucleic acids in
which complementary nucleotide sequences specifically bind together. Each microarray
consists of a glass or silicon slide dotted with a grid of short (25-40 base pairs long), single-
stranded DNA fragments, known as probes. The probes in a single spot are present in
millions of copies, and optimized to uniquely correspond to a gene.

To measure the gene expression profile of a sample, mRNA is extracted from the
sample and converted into complementary-DNA (cDNA). The cDNA is then labeled with
a fluorescent dye and added to a microarray. When cDNA from the sample encounters
complementary DNA probes, the two strands will hybridize, allowing the cDNA to adhere
to specific spots on the slide. Once the chip is illuminated (to activate the fluorescence)
and scanned, the intensity of fluorescence detected at each spot corresponds to the amount
of bound cDNA.

Microarrays are commonly used to compare gene expression between an experimen-
tal sample and a reference sample. Suppose that the reference sample is taken from
healthy cells and the experimental sample from cancer cells. First, the cDNA from the
samples are differentially labeled, such as green dye for the healthy cells and red dye for
the cancer cells. The samples are then mixed together and allowed to bind to the slide.
If the expression of a particular gene is higher in the experimental sample than in the

53van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression sign as a predictor of survival in breast
cancer. New England Journal of Medicine 2002;347:1999-2009.
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reference sample, then the corresponding spot on the microarray will appear red. In con-
trast, the spot will appear green if expression in the experimental sample is lower than in
the reference sample. Equal expression levels result in a yellow spot, while no expression
in either sample shows as a black dot. The fluorescence intensity data provide a relative
measure of gene expression, showing which genes on the chip seem to be more or less
active in relation to each other.

The raw data produced by a microarray is messy, due to factors such as imperfec-
tions during chip manufacturing or unpredictable probe behavior. It is also possible for
inaccuracies to be introduced from cDNA binding to probes that are not precise sequence
matches; this nonspecific binding will contribute to observed intensity, but not reflect the
expression level of a gene. Methods to improve microarray accuracy by reducing the fre-
quency of nonspecific binding include using longer probes or multiple probes per gene
that correspond to different regions of the gene sequence.54 The Affymetrix company de-
veloped a different strategy involving the use of probe pairs; one set of probes are a perfect
match to the gene sequence (PM probes), while the mismatch probes contain a single base
difference in the middle of the sequence (MM probes). The MM probes act as a control for
any cDNA that exhibit nonspecific binding; subtracting the MM probe intensity from the
PM intensity (PM - MM) provides a more accurate measure of fluorescence produced by
specific hybridization.

Considerable research has been done to develop methods for pre-processing microar-
ray data to adjust for various errors and produce data that can be analyzed. When analyz-
ing "cleaned" data from any experiment, it is important to be aware that the reliability of
any conclusions drawn from the data depends, to a large extent, on the care that has been
taken in collecting and processing the data.

Golub leukemia study

Accurate cancer classification is critical for determining an appropriate course of therapy.
The chemotherapy regimens for acute leukemias differs based on whether the leukemia af-
fects blood-forming cells (acute myeloid leukemia, AML) or white blood cells (acute lym-
phoblastic leukemia, ALL). At the time of the Golub study, no single diagnostic test was
sufficient for distinguishing between AML and ALL. To investigate whether gene expres-
sion profiling could be a tool for classifying acute leukemia type, Golub and co-authors
used Affymetrix DNA microarrays to measure the expression level of 7,129 genes from
children known to have either AML or ALL.55

The original data (after some initial pre-processing) are available from the Broad
Institute.56 The version of the data presented in this text have undergone further pro-
cessing; the expression levels have been normalized to adjust for the variability between
the separate arrays used for each sampled individual.57 Table 1.54 describes the variables
in the first six columns of the Golub data. The last 7,129 columns of the dataset contain
the expression data for the genes examined in the study; each column is named after the
probe corresponding to a specific gene.

Table 1.55 shows five rows and seven columns from the dataset. Each row corre-
sponds to a patient. These five patients were all treated at the Dana Farber Cancer Insti-

54Chou, C.C. et al. Optimization of probe length and the number of probes per gene for optimal microarray
analysis of gene expression. Nucleic Acids Research 2004; 32: e99.

55Golub, Todd R., et al. Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 286 (1999): 531-537.

56http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML.html
57John Maindonald, W. John Braun. Data Analysis and Graphics using R: An Example-Based Approach.
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tute (DFCI) (Source) for ALL with B-cell origin (cancer), and samples were taken from
bone marrow (BM.PB). Four of the patients were female and one was male (Gender). The
last row in the table shows the normalized gene expression level for the gene correspond-
ing to the probe AFFX.BioB.5.at.

variable description
Samples Sample number; unique to each patient.
BM.PB Type of patient material. BM for bone marrow; PB for peripheral blood.
Gender F for female, M for male.
Source Hospital where the patient was treated.
tissue.mf Combination of BM.PB and Gender
cancer Leukemia type; aml is acute myeloid leukemia, allB is acute lymphoblastic

leukemia with B-cell origin, and allT is acute lymphoblastic leukemia with
T-cell origin.

Table 1.54: Variables and their descriptions for the patient descriptors in
Golub dataset.

Samples BM.PB Gender Source tissue.mf cancer AFFX-BioB-5_at
39 BM F DFCI BM:f allB -1363.28
40 BM F DFCI BM:f allB -796.29
42 BM F DFCI BM:f allB -679.14
47 BM M DFCI BM:m allB -1164.40
48 BM F DFCI BM:f allB -1299.65

Table 1.55: Five rows and seven columns from the Golub data.

The goal of the Golub study was to develop a procedure for distinguishing between
AML and ALL based only on the gene expression levels of a patient. There are two major
issues to be addressed:

1. Which genes are the most informative for making a prediction? If a gene is differentially
expressed between individuals with AML versus ALL, then measuring the expres-
sion level of that gene may be informative for diagnosing leukemia type. For exam-
ple, if a gene tends to be highly expressed in AML individuals, but only expressed
at low levels in ALL individuals, it is more likely to be a good predictor of leukemia
type than a gene that is expressed at similar levels in both AML and ALL patients.

2. How can leukemia type be predicted from expression data? Suppose that a patient’s ex-
pression profile is measured for a group of genes. In an ideal scenario, all the genes
measured would exhibit AML-like expression, or ALL-like expression, making a pre-
diction obvious. In reality, however, a patient’s expression profile will not follow an
idealized pattern. Some of the genes may have expression levels more typical of
AML, while others may suggest ALL. It is necessary to clearly define a strategy for
translating raw expression data into a prediction of leukemia type.

Even though the golub dataset is relatively small by modern standards, it is al-
ready too large to feasibly analyze without the use of statistical computing software. In
this section, conceptual details will be demonstrated with a small version of the dataset
(golub.small) that contains only the data for 10 patients and 10 genes. Table 1.56 shows
the cancer type and expression data in golub.small; the expression values have been
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rounded to the nearest whole number, and the gene probes are labeled A-J for conve-
nience.

cancer A B C D E F G H I J
allB 39308 35232 41171 35793 -593 -1053 -513 -537 1702 1120
allT 32282 41432 59329 49608 -123 -511 265 -272 3567 -489
allB 47430 35569 56075 42858 -208 -712 32 -313 433 400
allB 25534 16984 28057 32694 89 -534 -24 195 3355 990
allB 35961 24192 27638 22241 -274 -632 -488 20 2259 348
aml 46178 6189 12557 34485 -331 -776 -551 -48 4074 -578
aml 43791 33662 38380 29758 -47 124 1118 3425 7018 1133
aml 53420 26109 31427 23810 396 108 1040 1915 4095 -709
aml 41242 37590 47326 30099 15 -429 784 -532 1085 -1912
aml 41301 49198 66026 56249 -418 -948 -340 -905 877 745

Table 1.56: Leukemia type and expression data from golub.small.

To start understanding how gene expression differs by leukemia type, summarize
the data separately for AML patients and for ALL patients, then make comparisons. For
example, how does the expression of Gene A differ between individuals with AML versus
ALL? Among the 5 individuals with AML, the mean expression for Gene A is 45,186;
among the 5 ALL individuals, mean expression for Gene A is 36,103.

Table 1.57 shows mean expression values for each gene among AML patients and
Table 1.58 among ALL patients.

AML A B C D E F G H I J
46178 6189 12557 34485 -331 -776 -551 -48 4074 -578
43791 33662 38380 29758 -47 124 1118 3425 7018 1133
53420 26109 31427 23810 396 108 1040 1915 4095 -709
41242 37590 47326 30099 15 -429 784 -532 1085 -1912
41301 49198 66026 56249 -418 -948 -340 -905 877 745

Mean 45186 30550 39143 34880 -77 -384 410 771 3430 -264

Table 1.57: Expression data for AML patients, where the last row contains
mean expression value for each gene among the 5 AML patients. The first
five rows are duplicated from the last five rows in Table 1.56.

ALL A B C D E F G H I J
39308 35232 41171 35793 -593 -1053 -513 -537 1702 1120
32282 41432 59329 49608 -123 -511 265 -272 3567 -489
47430 35569 56075 42858 -208 -712 32 -313 433 400
25534 16984 28057 32694 89 -534 -24 195 3355 990
35961 24192 27638 22241 -274 -632 -488 20 2259 348

Mean 36103 30682 42454 36639 -222 -689 -146 -181 2263 474

Table 1.58: Expression data for ALL patients, where the last row contains
mean expression value for each gene among the 5 ALL patients. The first
five rows are duplicated from the first five rows in Table 1.56.

 Example 1.30 On average, which genes are more highly expressed in AML pa-
tients? Which genes are more highly expressed in ALL patients?
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For each gene, compare the mean expression value among ALL patients to the mean
among AML patients. For example, the difference in mean expression levels for
Gene A is

xAML − xALL = 45186− 36103 = 9083.

The differences in means for each gene are shown in Table 1.59. Due to the order of
subtraction used, genes with a positive difference value are more highly expressed
in AML patients: A, E, F, G, H, and I. Genes B, C, D, and J are more highly expressed
in ALL patients.

A B C D E F G H I J
AML mean 45186 30550 39143 34880 -77 -384 410 771 3430 -264
ALL mean 36103 30682 42454 36639 -222 -689 -146 -181 2263 474
Difference 9083 -132 -3310 -1758 145 304 556 952 1167 -738

Table 1.59: The difference in mean expression levels by leukemia type for
each gene in golub.small.

The most informative genes for predicting leukemia type are ones for which the dif-
ference in means seems relatively large, compared to the entire distribution of differences.
Figure 1.60 visually displays the distribution of differences; the boxplot indicates that
there is one large outlier and one small outlier.
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Figure 1.60: A histogram and boxplot of the differences in mean expres-
sion level between AML and ALL in the golub.small data.

It is possible to identify the outliers from simply looking at the list of differences,
since the list is short: Genes A and C, with differences of 9,083 and -3,310, respectively.58

It is important to remember that Genes A and C are only outliers out of the specific 10
genes in golub.small, where mean expression has been calculated using data from 10
patients; these genes do not necessarily show outlier levels of expression relative to the
complete dataset.

58For a numerical approach, calculate the outlier boundaries defined by 1.5× IQR.
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Figure 1.61: A histogram and boxplot of the differences in mean expres-
sion level between AML and ALL, using information from 7,129 genes and
62 patients in the Golub data (golub.train).
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With the use of computing software, the same process of calculating means, differ-
ences of means, and identifying outliers can easily be applied to the complete version of
the data. Figure 1.61 shows the distribution of differences in mean expression level be-
tween AML and ALL patients for all 7,129 genes in the dataset, from 62 patients. The vast
majority of genes are expressed at similar levels in AML and ALL patients; most genes
have a difference in mean expression within -5,000 to 5,000. However, there are many
genes that show extreme differences, as much as higher by 20,000 in AML or lower by
30,000 in ALL. These genes may be useful for differentiating between AML and ALL. The
corresponding R lab illustrates the details of using R to identify these genes.59

Note how Figure 1.61 uses data from only 62 patients out of the 72 in the Golub
dataset; this subset is called golub.train. The remaining 10 patients have been set aside
as a "test" dataset (golub.test). Based on what has been learned about expression patterns
from the 62 patients in golub.train, how well can the leukemia type of the 10 patients in
golub.test be predicted?60

Figure 1.62: Schematic of the prediction strategy used by the Golub team,
reproduced with modifications from Fig. 1B of the original paper.

Figure 1.62 illustrates the main ideas behind the strategy developed by the Golub
team to predict leukemia type from expression data. The vertical orange bars represent
the gene expression levels of a patient for each gene, relative to the mean expression for
AML patients and ALL patients from the training dataset (vertical blue bars). A gene
will "vote" for either AML or ALL, depending on whether the patient’s expression level
is closer to µAML or µALL. In the example shown, three of the genes are considered to
have ALL-like expression, versus the other two that are more AML-like. The votes are
also weighted to account for how far an observation is from the midpoint between the two
means (horizontal dotted blue line), i.e. the length of the dotted line shows the deviation
from the midpoint. For example, the observed expression value for gene 2 is not as strong
an indicator of ALL as the expression value for gene 1. The magnitude of the deviations
(v1, v2, ...) are summed to obtain VAML and VALL, and a higher value indicates a prediction
of either AML or ALL, respectively.

The published analysis chose to use 50 informative genes; a decision about how many
genes to use in a diagnostic panel typically involves considering factors such as the num-
ber of genes practical for a clinical setting. For simplicity, a smaller number of genes will
be used in the analysis shown here.

59Lab 3, Chapter 1.
60The original analysis used data from 38 patients to identify informative genes, then tested predictions on

an independent collection of data from 34 patients.
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Suppose that 10 genes are selected as predictors—the 5 largest outliers and 5 small-
est outliers for the difference in mean expression between AML and ALL. Table 1.63
shows expression data for these 10 genes from the 10 patients in golub.test, while Ta-
ble 1.64 contains the mean expression value for each gene among AML and ALL patients
in golub.train.

M19507_at M27891_at M11147_at M96326_rna1_at Y00787_s_at M14483_rna1_s_at X82240_rna1_at X58529_at M33680_at U05259_rna1_at
1 4481 47532 56261 1785 -77 7824 -231 9520 7181 2757
2 11513 2839 42469 5018 20831 27407 -1116 -221 6978 -187
3 21294 6439 30239 61951 -187 19692 -540 216 1741 -84
4 -399 26023 40910 1271 26842 30092 -1247 19033 13117 -188
5 -147 29609 37606 20053 12745 26985 -1104 -273 8701 -168
6 -1229 -1206 16932 2250 360 38058 20951 12406 9927 8378
7 -238 -610 21798 -991 -348 23986 6500 20451 8500 7005
8 -1021 -792 17732 730 5102 17893 158 9287 7924 9221
9 432 -1099 9683 -576 -804 14386 7097 5556 9915 5594

10 -518 -862 26386 -2971 -1032 30100 32706 21007 23932 14841

Table 1.63: Expression data from the 10 patients in golub.test, for the 10
genes selected as predictors. Each row represents a patient; the five right-
most columns are the 5 largest outliers and the five left-most columns are
the 5 smallest outliers.

Probe AML Mean ALL Mean Midpoint
M19507_at 20143 322 9910
M27891_at 17395 -262 8829
M11147_at 32554 16318 8118

M96326_rna1_at 16745 830 7957
Y00787_s_at 16847 1002 7923

M14483_rna1_s_at 22268 33561 -5647
X82240_rna1_at -917 9499 -5208

X58529_at 598 10227 -4815
M33680_at 4151 13447 -4648

U05259_rna1_at 74 8458 -4192

Table 1.64: Mean expression value for each gene among AML patients and
ALL patients in golub.train, and the midpoint between the means.

 Example 1.31 Consider the expression data for the patient in the first row of Ta-
ble 1.63. For each gene, identify whether the expression level is more AML-like or
more ALL-like.

For the gene represented by the M19507_at probe, the patient has a recorded expres-
sion level of 4,481, which is closer to the ALL mean of 322 than the AML mean of
20,143. However, for the gene represented by the M27891_at probe, the expression
level of 47,532 is closer to the AML mean of 17,395 than the ALL mean of -262.

Expression at genes represented by M19507_at, M96326_rna1_at, Y00787_s_at, and
X58529_at are more ALL-like than AML-like. All other expression levels are closer
to µAML.

 Example 1.32 Use the information in Tables1.63 and 1.64 to calculate the magni-
tude of the deviations v1 and v10 for the first patient.

For the gene represented by the M19507_at probe, the magnitude of the deviation
is v1 = |4,481− 20,143| = 15,662.

For the gene represented by the U05259_rna1_at probe, the magnitude of the devi-
ation is v10 = |2,757− 74| = 2.683.
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M19507_at M27891_at M11147_at M96326_rna1_at Y00787_s_at M14483_rna1_s_at X82240_rna1_at X58529_at M33680_at U05259_rna1_at
1 4481 47532 56261 1785 77 7824 231 9520 7181 2757
2 11513 2839 42469 5018 20831 27407 1116 221 6978 187
3 21294 6439 30239 61951 187 19692 540 216 1741 84
4 399 26023 40910 1271 26842 30092 1247 19033 13117 188
5 147 29609 37606 20053 12745 26985 1104 273 8701 168
6 1229 1206 16932 2250 360 38058 20951 12406 9927 8378
7 238 610 21798 991 348 23986 6500 20451 8500 7005
8 1021 792 17732 730 5102 17893 158 9287 7924 9221
9 432 1099 9683 576 804 14386 7097 5556 9915 5594

10 518 862 26386 2971 1032 30100 32706 21007 23932 14841

Table 1.65: The magnitude of deviations from the midpoints. Cells for
which the expression level is more ALL-like (closer to µALL than µAML) are
highlighted in blue.

 Example 1.33 Using the information in Table 1.65, make a prediction for the leukemia
status of Patient 1.

Calculate the total weighted votes for each category:

VAML = 47,532 + 56,261 + 7,824 + 231 + 7,181 + 2,757 = 121,786

VALL = 4,481 + 1,785 + 77 + 9,520 = 15,863

Since VAML > VALL, Patient 1 is predicted to have AML.⊙
Guided Practice 1.34 Make a prediction for the leukemia status of Patient 10.61

Table 1.66 shows the comparison between actual leukemia status and predicted leukemia
status based on the described prediction strategy. The prediction matches patient leukemia
status for all patients.

Actual Prediction
1 aml aml
2 aml aml
3 aml aml
4 aml aml
5 aml aml
6 allB all
7 allB all
8 allB all
9 allB all

10 allB all

Table 1.66: Actual leukemia status versus predicted leukemia status for
the patients in golub.test

The analysis presented here is meant to illustrate how basic statistical concepts such
as the definition of an outlier can be leveraged to address a relatively complex scientific
question. There are entirely different approaches possible for analyzing these data, and
many other considerations that have not been discussed. For example, this method of
summing the weighted votes for each gene assumes that each gene is equally informative;
the analysis in the published paper incorporates an additional weighting factor when cal-
culating VAML and VALL that accounts for how correlated each gene is with leukemia type.

61Since VAML = 26,386 and VALL = 127,968, Patient 10 is predicted to have ALL.
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The published analysis also calculates prediction strength based on the values of VAML
and VAML in order to provide a measure of how reliable each prediction is.

Finally, it is important to remember that the Golub analysis represented one of the
earliest investigations into the use of gene expression data for diagnostic purposes. While
the overall logical goals remain the same—identifying informative genes and developing
a prediction strategy—the means of accomplishing them have become far more sophisti-
cated. A modern study would have the benefit of referencing established, well-defined
techniques for analyzing microarray data.

1.7.3 Case study: cold-responsive genes in the plantArabidopsis arenosa

In contrast to hybridization-based approaches, RNA sequencing (RNA-Seq) allows for the
entire transcriptome to be surveyed in a high-throughput, quantitative manner.62 Mi-
croarrays require gene-specific probes, which limits microarray experiments to detect-
ing transcripts that correspond to known gene sequences. In contrast, RNA-Seq can still
be used when genome sequence information is not available, such as for non-model or-
ganisms. RNA-Seq is an especially powerful tool for researchers interested in studying
small-scale genetic variation, such as single nucleotide polymorphisms, which microar-
rays are not capable of detecting.63 Compared to microarrays, RNA-Seq technology offers
increased sensitivity for detecting genes expressed at either low or very high levels.

This section introduces the concepts behind RNA-Seq technology and discusses a
study that used RNA-Seq to explore the genetic basis of cold response in the plant Ara-
bidopsis arenosa.

RNA sequencing (RNA-Seq)

The first step in an RNA-Seq experiment is to prepare cDNA sequence libraries for each
RNA sample being sequenced. RNA is converted into cDNA and sheared into short frag-
ments; sequencing adapters and barcodes are added to each fragment that initiate the
sequencing reaction and identify sequences that originate from different samples. Once
all the cDNA fragments are sequenced, the resulting short sequence reads must be re-
constructed to produce the transcriptome. At this point, even the simplest RNA-Seq
experiment has generated a relatively large amount of data; the complexity involved in
processing and analyzing RNA-Seq data represents a significant challenge to widespread
adoption of RNA-Seq technology. While a number of programs are available to help re-
searchers process RNA-Seq data, improving computational methods for working with
RNA-Seq data remains an active area of research.

A transcriptome can be assembled from the short sequence reads by either de novo
assembly or genome mapping. In de novo assembly, sequencing data are run through com-
puter algorithms that identify overlapping regions in the short sequence reads to gradu-
ally piece together longer stretches of continuous sequence. Alternatively, the reads can
be aligned to a reference genome, a genome sequence which functions as a representative
template for a given species; in cases where a species has not been sequenced, the genome
of a close relative can also function as a reference genome. By mapping reads against a
genome, it is possible to identify the position (and thus, the gene) from which a given
RNA transcript originated. It is also possible to use a combination of these two strate-
gies, an approach that is especially advantageous when genomes have experienced major

62Wang, et al. RNA-Seq: a revolutionary tool for transcriptomics. Nature Genetics 2009; 10: 57-63.
63A single nucleotide polymorphism (SNP) represents variation at a single position in DNA sequence among

individuals.
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rearrangements, such as in the case of cancer cells.64 Once the transcripts have been as-
sembled, information stored in sequence databases such as those hosted by the National
Center for Biotechnology (NCBI) can be used to identify gene sequences (i.e., annotate the
transcripts).

Quantifying gene expression levels from RNA-Seq data is based on counting the
number of sequence reads per gene. If a particular gene is highly expressed, there will be
a relatively high number of RNA transcripts originating from that gene; thus, the proba-
bility that transcripts from this gene are sequenced multiple times is also relatively high,
and the gene will have a high number of sequencing reads associated with it. The number
of read counts for a given gene provides a measure of gene expression level, when nor-
malized for transcript length. If a short transcript and long transcript are present in equal
amounts, the long transcript will have more sequencing reads associated with it due to the
fragmentation step in library construction. Additional normalization steps are necessary
when comparing data between samples to account for factors such as differences in the
starting amount of RNA or the total number of sequencing reads generated (sequencing
depth, in the language of genomics). A variety of strategies have been developed to carry
out such normalization procedures.

Cold-responsive genes in A. arenosa

Arabidopsis arenosa populations exist in different habitats, and exhibit a range of differ-
ences in flowering time, cold sensitivity, and perenniality. Sensitivity to cold is an impor-
tant trait for perennials, plants that live longer than one year. It is common for perennials
to require a period of prolonged cold in order to flower. This mechanism, known as ver-
nalization, allows perennials to synchronize their life cycle with the seasons such that
they flower only once winter is over. Plant response to low temperatures is under genetic
control, and mediated by a specific set of cold-responsive genes.

In a recent study, researchers used RNA-Seq to investigate how cold responsiveness
differs in two populations of A. arenosa: TBG (collected from Triberg, Germany) and KA
(collected from Kasparstein, Austria).65 TBG grows in and around railway tracks, while
KA is found on shaded limestone outcrops in wooded forests. As an annual, TBG has lost
the vernalization response and does not required extended cold in order to flower; in the
wild, TBG plants usually die before the onset of winter. In contrast, KA is a perennial
plant, in which vernalization is known to greatly accelerate the onset of flowering.

Winter conditions can be simulated by incubating plants at 4 ◦C for several weeks; a
plant that has undergone cold treatment is considered vernalized, while plants that have
not been exposed to cold treatment are non-vernalized. Expression data were collected
for 1,088 genes known to be cold-responsive in TBG and KA plants that were either ver-
nalized or non-vernalized.

Table 1.67 shows the data collected for the KA plants analyzed in the study, while
Table 1.68 shows the TBG expression data. Each row corresponds to a gene; the first
column indicates gene name, while the rest correspond to expression measured in a plant
sample. Three individuals of each population were exposed to cold (vernalized, denoted
by V), and three were not (non-vernalized, denoted by NV). Expression was measured in
gene counts (i.e. the number of RNA transcripts present in a sample); the data were then
normalized between samples to allow for comparisons between gene counts. For example,

64Garber, et al. Computational methods for transcriptome annotation and quantification using RNA-seq.
Nature Methods 2011; 8: 469-477.

65Baduel P, et al. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa. Plant
Physiology 2016; 171: 437-451.
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a value of 288.20 for the PUX4 gene in KA NV 1 indicates that in one of the non-vernalized
KA individuals, about 288 copies of PUX4 were detected.

A high number of transcripts indicates a high level of gene expression. As seen by
comparing the expression levels across the first rows of Tables 1.67 and 1.68, the expres-
sion levels of PUX4 are higher in vernalized plants than non-vernalized plants.

Gene Name KA NV 1 KA NV 2 KA NV 3 KA V 1 KA V 2 KA V 3
1 PUX4 288.20 322.55 305.35 1429.29 1408.25 1487.08
2 TZP 79.36 93.34 73.44 1203.40 1230.49 1214.03
3 GAD2 590.59 492.69 458.02 2639.42 2645.05 2705.32
4 GAUT6 86.88 99.25 57.98 586.24 590.03 579.71
5 FB 791.08 912.12 746.94 3430.03 3680.12 3467.06

Table 1.67: Five rows and seven columns from the arenosa dataset, show-
ing expression levels in KA plants.

Gene Name TBG NV 1 TBG NV 2 TBG NV 3 TBG V 1 TBG V 2 TBG V 3
1 PUX4 365.23 288.13 365.01 601.39 800.64 698.73
2 TZP 493.23 210.27 335.33 939.72 974.36 993.14
3 GAD2 1429.14 1339.50 2215.27 1630.77 1500.36 1621.28
4 GAUT6 129.63 76.40 135.02 320.57 298.91 399.27
5 FB 1472.35 1120.49 1313.14 3092.37 3230.72 3173.00

Table 1.68: Five rows and seven columns from the arenosa dataset, show-
ing expression levels in TBG plants.

The three measured individuals in a particular group represent biological replicates,
individuals of the same type grown under identical conditions; collecting data from mul-
tiple individuals of the same group captures the inherent biological variability between
organisms. Averaging expression levels across these replicates provides an estimate of the
typical expression level in the larger population. Table 1.69 shows the mean expression
levels for five genes.

Gene Name KA NV KA V TBG NV TBG V
1 PUX4 305.36 1441.54 339.46 700.25
2 TZP 82.05 1215.97 346.28 969.07
3 GAD2 513.77 2663.26 1661.30 1584.14
4 GAUT6 81.37 585.33 113.68 339.58
5 FB 816.71 3525.74 1301.99 3165.36

Table 1.69: Mean gene expression levels of five cold-responsive genes, for
non-vernalized and vernalized KA and TBG.

Figure 1.70(a) plots the mean gene expression levels of all 1,088 genes for each group.
The expression levels are heavily right-skewed, with many genes present at unusually
high levels relative to other genes. This is an example of a situation in which a trans-
formation can be useful for clarifying the features of a distribution. In Figure 1.70(b), it
is easier to see that expression levels of vernalized plants are shifted upward relative to
nonvernalized plants. Additionally, while median expression is slightly higher in non-
vernalized TBG than non-vernalized KA, median expression in vernalized KA is higher
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Figure 1.70: (a) Mean gene expression levels for non-vernalized KA, ver-
nalized KA, non-vernalized TBG, and vernalized TBG plants. (b) Log-
transformed mean gene expression levels.

than in vernalized TBG. Vernalization appears to trigger a stronger change in expression
of cold-responsive genes in KA plants than in TBG plants.

Figure 1.70 is only a starting point for exploring how expression of cold-responsive
genes differs between KA and TBG plants. Consider a gene-level approach, in which
the responsiveness of a gene to vernalization is quantified as the ratio of expression in a
vernalized sample to expression in a non-vernalized sample.

Table 1.70(a) shows responsiveness for five genes, calculated separately between V
and NV TBG and V and NV KA, using the means in Table 1.69. The ratios provide a
measure of how much expression differs between vernalized and non-vernalized individ-
uals. For example, the gene TZP is expressed almost 15 times as much in vernalized KA
than it is in non-vernalized KA. In contrast, the gene GAD2 is expressed slightly less in
vernalized TBG than in non-vernalized TBG.

As with the mean gene expression levels, it is useful to apply a log transformation
(Table 1.70(b)). On the log scale, values close to 0 are indicative of low responsiveness,
while large values in either direction correspond to high responsiveness. Figure 1.72
shows the log2-transformed expression ratios as a side-by-side boxplot.66

Figure 1.72 directly illustrates how the magnitude of response to vernalization in
TBG is smaller than in KA. The spread of responsiveness in KA is larger than for TBG, as
indicated by the larger IQR and range of values; this indicates that more genes in KA are
differentially expressed between vernalized and non-vernalized samples. Additionally,
the median responsiveness in KA is higher than in TBG.

There are several outliers for both KA and TBG, with large outliers representing
genes that were much more highly expressed in vernalized plants than non-vernalized
plants, and vice versa for low outliers. These highly cold-responsive genes likely play a

66One gene is omitted because the expression ratio in KA is 0, and the logarithm of 0 is undefined.
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(a)

Gene Name TBG KA
1 PUX4 2.06 4.72
2 TZP 2.80 14.82
3 GAD2 0.95 5.18
4 GAUT6 2.99 7.19
5 FB 2.43 4.32

(b)

Gene Name TBG KA
1 PUX4 1.04 2.24
2 TZP 1.48 3.89
3 GAD2 -0.07 2.37
4 GAUT6 1.58 2.85
5 FB 1.28 2.11

Table 1.71: (a) Ratio of mean expression in vernalized individuals to mean
expression in non-vernalized individuals. (b) Log2-transformation of ex-
pression ratios in Table 1.70(a).
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Figure 1.72: Responsiveness for 1,087 genes in arenosa, calculated as the
log2 ratio of vernalized over non-vernalized expression levels.

role in how plants cope with colder temperatures; they could be involved in regulating
freezing tolerance, or controlling how plants detect cold temperatures. With the help of
computing software, it is a simple matter to identify the outliers and address questions
such as whether particular genes are highly vernalization-responsive in both KA and TBG.

Advanced data visualization

There are many ways to numerically and graphically summarize data that are not explic-
itly introduced in this chapter. Presentation-style graphics in published manuscripts can
be especially complex, and may feature techniques specific to a certain field as well as
novel approaches designed to highlight particular features of a dataset. This section dis-
cusses the figures generated by the Baduel, et al. research team to visualize the differences
in vernalization response between KA and TBG A. arenosa plants.

Each dot in Figure 1.73 represents a gene; each gene is plotted by its mean expression
level in KA against its mean expression level in TBG. The overall trend can be summarized
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Figure 1.73: Figure 4 from the original manuscript. Plot A compares mean
expression levels between unvernalized KA and TBG; Plot B compares
mean expression levels between vernalized KA and TBG.

by a line fit to the points.67 For the slope of the line to equal 1, each gene would have to
be equally expressed in KA and TBG. In the upper plot, the slope of the line is less than 1,
which indicates that for unvernalized plants, cold-responsive genes have a higher expres-
sion in TBG than in KA. In the lower plot, the slope is greater than 1, indicating that the
trend is reversed in vernalized plants: cold-responsive genes are more highly expressed
in KA. This trend is also discernible from the side-by-side boxplot in Figure 1.70. Using a
scatterplot, however, makes it possible to directly compare expression in KA versus TBG
on a gene-by-gene basis, and also locate particular genes of interest that are known from
previous research (e.g., the labeled genes in Figure 1.73.)68 The colors in the plot signify
plot density, with warmer colors representing a higher concentration of points.

Figure 1.74, like Figure 1.72, compares the cold-responsiveness in KA versus TBG,
calculating responsiveness as the log2 ratio of vernalized over non-vernalized expression
levels. As in Figure 1.73, each dot represents a single gene. The slope of the best fitting line
is greater than 1, indicating that the assayed genes typically show greater responsiveness
in KA than in TBG.69

While presentation-style graphics may use relatively sophisticated approaches to dis-
playing data that seem far removed from the simple plots discussed in this chapter, the

67Lines of best fit are discussed in Chapter 6.
68Only a subset of the 1,088 genes are plotted in Figure 1.73.
69These 608 genes are a subset of the ones plotted in Figure 1.73; genes with expression ratio 0 are not

included.
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Figure 1.74: Figure 3 from the original manuscript. Each gene is plotted
based on the values of the log2 expression ratio in KA versus TBG.

end goal remains the same – to effectively highlight key features of data.

1.8 Notes

Introductory treatments of statistics often emphasize the value of formal methods of prob-
ability and inference, topics which are covered in the remaining chapters of this text.
However, numerical and graphical summaries are essential for understanding the features
of a dataset and should be applied before the process of inference begins. It is inadvisable
to begin conducting tests or constructing models without a careful understanding of the
strengths and weaknesses of a dataset. For example, are some measurements out of range,
or the result of errors in data recording?

The tools of descriptive statistics form the basis of exploratory data analysis; having
the intuition for exploring and interpreting data in the context of a research question is
an essential statistical skill. With computing software, it is a relatively simple matter to
produce numerical and graphical summaries, even with large datasets. The challenge lies
instead in understanding how to wade through a dataset, disentangle complex relation-
ships between variables, and piece together the underlying story.

It is important to note that the graphical methods illustrated in the text are relatively
simple, static graphs that, for instance, do not show changes dynamically over time. They
will be surprisingly useful in the later chapters. But there has been considerable progress
in the visual display of data in the last decade, and many wonderful displays exist that
show complex, time dependent data. For examples of sophisticated graphical displays,
we especially recommend the bubble charts available at the Gapminder web site (https:
//www.gapminder.org) that show international trends in public health outcomes and the
graphical displays of data in the Upshot section of the New York Times (https://www.
nytimes.com/section/upshot).

There are four labs associated with Chapter 1. The first lab introduces basic com-

https://www.gapminder.org
https://www.gapminder.org
https://www.nytimes.com/section/upshot
https://www.nytimes.com/section/upshot
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mands for working with data in R, and shows how to produce the graphical and numerical
summaries discussed in this chapter. The exercises in Lab 1 rely heavily on the introduc-
tion to R and R Studio in Lab 00 (Getting Started). The Lab Notes corresponding to Lab
1 provide a systematic introduction to R functions useful for getting started with applied
data analysis.

The remaining three labs explore the data presented in the case studies in Section 1.7,
outlining analyses driven by questions similar to what one might encounter in practice.
Does the state of California discriminate in its distribution of funds for developmental
disability support (Lab 2)? Are particular genes associated with a subtype of pediatric
leukemia (Lab 3)? Is there a genetic basis to the cold weather response in the plant Ara-
bidopsis arenosa (Lab 4)? Labs 3 and 4 demonstrate how computing is essential for data
analysis; even though the two datasets are relatively small by modern standards, they are
already too large to feasibly analyze without statistical computing software. All three labs
illustrate how important questions can be examined even with relatively simple statistical
concepts.
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1.9 Exercises

1.9.1 Case study: preventing peanut allergies
1.1 Migraine and acupuncture. Acupuncture is sometimes recommended as a treatment option
for migraines; a migraine is a particularly painful type of headache. To determine whether acupunc-
ture relieves migraine pain, researchers conducted a randomized controlled study in which 89 fe-
males diagnosed with migraines were randomly assigned to one of two groups: treatment or control.
The 43 patients in the treatment group received acupuncture that is specifically designed to treat
migraines, while 46 patients in the control group received placebo acupuncture (needle insertion at
a non-acupoint locations). 24 hours after receiving acupuncture, patients were asked if they were
pain free; the results are summarized in the contingency table below.70

Pain free
Yes No Total

Treatment 10 33 43Group
Control 2 44 46
Total 12 77 89

identified on the antero-internal part of the antitragus, the

anterior part of the lobe and the upper auricular concha, on
the same side of pain. The majority of these points were

effective very rapidly (within 1 min), while the remaining

points produced a slower antalgic response, between 2 and
5 min. The insertion of a semi-permanent needle in these

zones allowed stable control of the migraine pain, which

occurred within 30 min and still persisted 24 h later.
Since the most active site in controlling migraine pain

was the antero-internal part of the antitragus, the aim of
this study was to verify the therapeutic value of this elec-

tive area (appropriate point) and to compare it with an area

of the ear (representing the sciatic nerve) which is probably
inappropriate in terms of giving a therapeutic effect on

migraine attacks, since it has no somatotopic correlation

with head pain.

Materials and methods

The study enrolled 94 females, diagnosed as migraine

without aura following the International Classification of
Headache Disorders [5], who were subsequently examined

at the Women’s Headache Centre, Department of Gynae-

cology and Obstetrics of Turin University. They were all
included in the study during a migraine attack provided that

it started no more than 4 h previously. According to a

predetermined computer-made randomization list, the eli-
gible patients were randomly and blindly assigned to the

following two groups: group A (n = 46) (average age

35.93 years, range 15–60), group B (n = 48) (average age
33.2 years, range 16–58).

Before enrollment, each patient was asked to give an

informed consent to participation in the study.
Migraine intensity was measured by means of a VAS

before applying NCT (T0).

In group A, a specific algometer exerting a maximum
pressure of 250 g (SEDATELEC, France) was chosen to

identify the tender points with Pain–Pressure Test (PPT).

Every tender point located within the identified area by the
pilot study (Fig. 1, area M) was tested with NCT for 10 s

starting from the auricle, that was ipsilateral, to the side of

prevalent cephalic pain. If the test was positive and the
reduction was at least 25% in respect to basis, a semi-

permanent needle (ASP SEDATELEC, France) was

inserted after 1 min. On the contrary, if pain did not lessen
after 1 min, a further tender point was challenged in the

same area and so on. When patients became aware of an

initial decrease in the pain in all the zones of the head
affected, they were invited to use a specific diary card to

score the intensity of the pain with a VAS at the following

intervals: after 10 min (T1), after 30 min (T2), after
60 min (T3), after 120 min (T4), and after 24 h (T5).

In group B, the lower branch of the anthelix was

repeatedly tested with the algometer for about 30 s to
ensure it was not sensitive. On both the French and Chinese

auricular maps, this area corresponds to the representation

of the sciatic nerve (Fig. 1, area S) and is specifically used
to treat sciatic pain. Four needles were inserted in this area,

two for each ear.

In all patients, the ear acupuncture was always per-
formed by an experienced acupuncturist. The analysis of

the diaries collecting VAS data was conducted by an

impartial operator who did not know the group each patient
was in.

The average values of VAS in group A and B were

calculated at the different times of the study, and a statis-
tical evaluation of the differences between the values

obtained in T0, T1, T2, T3 and T4 in the two groups
studied was performed using an analysis of variance

(ANOVA) for repeated measures followed by multiple

t test of Bonferroni to identify the source of variance.
Moreover, to evaluate the difference between group B

and group A, a t test for unpaired data was always per-

formed for each level of the variable ‘‘time’’. In the case of
proportions, a Chi square test was applied. All analyses

were performed using the Statistical Package for the Social

Sciences (SPSS) software program. All values given in the
following text are reported as arithmetic mean (±SEM).

Results

Only 89 patients out of the entire group of 94 (43 in group
A, 46 in group B) completed the experiment. Four patients

withdrew from the study, because they experienced an

unbearable exacerbation of pain in the period preceding the
last control at 24 h (two from group A and two from group

B) and were excluded from the statistical analysis since

they requested the removal of the needles. One patient
from group A did not give her consent to the implant of the

semi-permanent needles. In group A, the mean number of

Fig. 1 The appropriate area
(M) versus the inappropriate
area (S) used in the treatment
of migraine attacks

S174 Neurol Sci (2011) 32 (Suppl 1):S173–S175

123

Figure from the original pa-
per displaying the appro-
priate area (M) versus the
inappropriate area (S) used
in the treatment of migraine
attacks.

(a) What percent of patients in the treatment group were pain free 24 hours after receiving acupunc-
ture? What percent in the control group?

(b) At first glance, does acupuncture appear to be an effective treatment for migraines? Explain
your reasoning.

1.2 Sinusitis and antibiotics. Researchers studying the effect of antibiotic treatment for acute
sinusitis randomly assigned 166 adults diagnosed with acute sinusitis to either the treatment or
control group. Patients in the treatment group received a 10-day course of amoxicillin, while pa-
tients in the control group received a placebo consisting of symptomatic treatments, such as nasal
decongestants. At the end of the 10-day period, patients were asked if they experienced significant
improvement in their symptoms. The distribution of responses are summarized below.71

Self-reported significant
improvement in symptoms
Yes No Total

Treatment 66 19 85Group
Control 65 16 81
Total 131 35 166

(a) What percent of patients in the treatment group experienced a significant improvement in
symptoms? What percent in the control group?

(b) Based on your findings in part (a), which treatment appears to be more effective for sinusitis?
(c) Does it seem like the observed difference could just be due to chance?

1.9.2 Data basics
1.3 Air pollution and birth outcomes, study components. Researchers collected data to examine
the relationship between air pollutants and preterm births in Southern California. During the study,

70Allais:2011.
71Garbutt:2012.
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air pollution levels were measured by air quality monitoring stations. Specifically, levels of carbon
monoxide were recorded in parts per million, nitrogen dioxide and ozone in parts per hundred mil-
lion, and coarse particulate matter (PM10) in µg/m3. Length of gestation data were collected for
143,196 births between the years 1989 and 1993, and air pollution exposure during gestation was
calculated for each birth. The analysis suggested that increased ambient PM10 and, to a lesser de-
gree, CO concentrations may be associated with the occurrence of preterm births.72 Identify (a) the
cases, (b) the variables and their types, and (c) the main research question in this study.

1.4 Buteyko method, study components. The Buteyko method is a shallow breathing technique
developed by Konstantin Buteyko, a Russian doctor, in 1952. Anecdotal evidence suggests that the
Buteyko method can reduce asthma symptoms and improve quality of life. In a scientific study
to determine the effectiveness of this method, researchers recruited 600 asthma patients aged 18-
69 who relied on medication for asthma treatment. These patients were split into two research
groups: one practiced the Buteyko method and the other did not. Afterwards, patients were scored
on quality of life, activity, asthma symptoms, and medication reduction on a scale from 0 to 10.
On average, the participants in the Buteyko group experienced a significant reduction in asthma
symptoms and an improvement in quality of life.73 Identify (a) the cases, (b) the variables and their
types, and (c) the main research question in this study.

1.5 Hummingbird taste behavior, study components. Researchers hypothesized that a particu-
lar taste receptor in hummingbirds, T1R1-T1R3, played a primary role in dictating taste behavior;
specifically, in determining which compounds hummingbirds detect as sweet. In a series of field
tests, hummingbirds were presented simultaneously with two filled containers, one containing test
stimuli and a second containing sucrose. The test stimuli included aspartame, erythritol, water, and
sucrose. Aspartame is an artificial sweetener that tastes sweet to humans, but is not detected by
hummingbird T1R1-T1R3 , while erythritol is an artificial sweetener known to activate T1R1-T1R3.

Data were collected on how long a hummingbird drank from a particular container for a given
trial, measured in seconds. For example, in one field test comparing aspartame and sucrose, a
hummingbird drank from the aspartame container for 0.54 seconds and from the sucrose container
for 3.21 seconds.

(a) Which tests are controls? Which tests are treatments?

(b) Identify the response variable(s) in the study. Are they numerical or categorical?

(c) Describe the main research question.

1.6 Egg coloration. The evolutionary significance of variation in egg coloration among birds is not
fully understood. One hypothesis suggests that egg coloration may be an indication of female qual-
ity, with healthier females being capable of depositing blue-green pigment into eggshells instead
of using it for themselves as an antioxidant. In a study conducted on 32 collared flycatchers, half
of the females were given supplementary diets before and during egg laying. Eggs were measured
for darkness of blue color using spectrophotometry; for example, the mean amount of blue-green
chroma was 0.594 absorbance units. Egg mass was also recorded.

(a) Identify the control and treatment groups.

(b) Describe the main research question.

(c) Identify the primary response variable of interest, and whether it is numerical or categorical.

1.7 Smoking habits of UK residents. A survey was conducted to study the smoking habits of UK
residents. Below is a data matrix displaying a portion of the data collected in this survey. Note
that “£" stands for British Pounds Sterling, “cig" stands for cigarettes, and “N/A” refers to a missing
component of the data.74

72Ritz+Yu+Chapa+Fruin:2000.
73McDowan:2003.
74data:smoking.
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sex age marital grossIncome smoke amtWeekends amtWeekdays
1 Female 42 Single Under £2,600 Yes 12 cig/day 12 cig/day
2 Male 44 Single £10,400 to £15,600 No N/A N/A
3 Male 53 Married Above £36,400 Yes 6 cig/day 6 cig/day
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
1691 Male 40 Single £2,600 to £5,200 Yes 8 cig/day 8 cig/day

(a) What does each row of the data matrix represent?
(b) How many participants were included in the survey?
(c) For each variable, indicate whether it is numerical or categorical. If numerical, identify the

variable as continuous or discrete. If categorical, indicate if the variable is ordinal.

1.8 The microbiome and colon cancer. A study was conducted to assess whether the abundance
of particular bacterial species in the gastrointestinal system is associated with the development of
colon cancer. The following data matrix shows a subset of the data collected in the study. Cancer
stage is coded 1-4, with larger values indicating cancer that is more difficult to treat. The abundance
levels are given for five bacterial species; abundance is calculated as the frequency of that species
divided by the total number of bacteria from all species.

age gender stage bug 1 bug 2 bug 3 bug 4 bug 5
1 71 Female 2 0.03 0.09 0.52 0.00 0.00
2 53 Female 4 0.16 0.08 0.08 0.00 0.00
3 55 Female 2 0.00 0.01 0.31 0.00 0.00
4 44 Male 2 0.11 0.14 0.00 0.07 0.05
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

73 48 Female 3 0.21 0.05 0.00 0.00 0.04

(a) What does each row of the data matrix represent?
(b) Identify explanatory and response variables.
(c) For each variable, indicate whether it is numerical or categorical.

1.9.3 Data collection principles
1.9 Air pollution and birth outcomes, scope of inference. Exercise 1.3 introduces a study where
researchers collected data to examine the relationship between air pollutants and preterm births in
Southern California. During the study, air pollution levels were measured by air quality monitoring
stations. Length of gestation data were collected on 143,196 births between the years 1989 and
1993, and air pollution exposure during gestation was calculated for each birth. It can be assumed
that the 143,196 births are effectively the entire population of births during this time period.

(a) Identify the population of interest and the sample in this study.
(b) Comment on whether or not the results of the study can be generalized to the population, and

if the findings of the study can be used to establish causal relationships.

1.10 Buteyko method, scope of inference. Exercise 1.4 introduces a study on using the Buteyko
shallow breathing technique to reduce asthma symptoms and improve quality of life. As part of
this study 600 asthma patients aged 18-69 who relied on medication for asthma treatment were
recruited and randomly assigned to two groups: one practiced the Buteyko method and the other
did not. Those in the Buteyko group experienced, on average, a significant reduction in asthma
symptoms and an improvement in quality of life.

(a) Identify the population of interest and the sample in this study.
(b) Comment on whether or not the results of the study can be generalized to the population, and

if the findings of the study can be used to establish causal relationships.
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1.11 Herbal remedies. Echinacea has been widely used as an herbal remedy for the common
cold, but previous studies evaluating its efficacy as a remedy have produced conflicting results. In
a new study, researchers randomly assigned 437 volunteers to receive either a placebo or echinacea
treatment before being infected with rhinovirus. Healthy young adult volunteers were recruited for
the study from the University of Virginia community.

(a) Identify the population of interest and the sample in this study.
(b) Comment on whether or not the results of the study can be generalized to a larger population.
(c) Can the findings of the study be used to establish causal relationships? Justify your answer.

1.12 Vitamin supplements. In order to assess the effectiveness of taking large doses of vitamin
C in reducing the duration of the common cold, researchers recruited 400 healthy volunteers from
staff and students at a university. A quarter of the patients were randomly assigned a placebo,
and the rest were randomly allocated between 1g Vitamin C, 3g Vitamin C, or 3g Vitamin C plus
additives to be taken at onset of a cold for the following two days. All tablets had identical appear-
ance and packaging. No significant differences were observed in any measure of cold duration or
severity between the four medication groups, and the placebo group had the shortest duration of
symptoms.75

(a) Was this an experiment or an observational study? Why?
(b) What are the explanatory and response variables in this study?
(c) Participants are ultimately able to choose whether or not to use the pills prescribed to them.

We might expect that not all of them will adhere and take their pills. Does this introduce a
confounding variable to the study? Explain your reasoning.

1.13 Exercise and mental health. A researcher is interested in the effects of exercise on mental
health and he proposes the following study: Use stratified random sampling to recruit 18-30, 31-40
and 41-55 year olds from the population. Next, randomly assign half the subjects from each age
group to exercise twice a week, and instruct the rest not to exercise. Conduct a mental health exam
at the beginning and at the end of the study, and compare the results.

(a) What type of study is this?
(b) What are the treatment and control groups in this study?
(c) Does this study make use of blocking? If so, what is the blocking variable?
(d) Comment on whether or not the results of the study can be used to establish a causal relation-

ship between exercise and mental health, and indicate whether or not the conclusions can be
generalized to the population at large.

(e) Suppose you are given the task of determining if this proposed study should get funding. Would
you have any reservations about the study proposal?

1.14 Chicks and antioxidants. Environmental factors early in life can have long-lasting effects on
an organism. In one study, researchers examined whether dietary supplementation with vitamins
C and E influences body mass and corticosterone level in yellow-legged gull chicks. Chicks were
randomly assigned to either the nonsupplemented group or the vitamin supplement experimental
group. The initial study group consisted of 108 nests, with 3 eggs per nest. Chicks were assessed at
age 7 days.

(a) What type of study is this?
(b) What are the experimental and control treatments in this study?
(c) Explain why randomization is an important feature of this experiment.

75Audera:2001.
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1.15 Internet use and life expectancy. Data were collected to evaluate the relationship between
estimated life expectancy at birth (as of 2014) and percentage of internet users (as of 2009) in 208
countries for which such data were available.76

(a) What type of study is this?

(b) State a possible confounding variable that might explain this relationship and describe its po-
tential effect.

1.16 Stressed out. A study that surveyed a random sample of otherwise healthy high school stu-
dents found that they are more likely to get muscle cramps when they are stressed. The study also
noted that students drink more coffee and sleep less when they are stressed.

(a) What type of study is this?

(b) Can this study be used to conclude a causal relationship between increased stress and muscle
cramps?

(c) State possible confounding variables that might explain the observed relationship between in-
creased stress and muscle cramps.

1.17 Evaluate sampling methods. A university wants to assess how many hours of sleep students
are getting per night. For each proposed method below, discuss whether the method is reasonable
or not.

(a) Survey a simple random sample of 500 students.

(b) Stratify students by their field of study, then sample 10% of students from each stratum.

(c) Cluster students by their class year (e.g. freshmen in one cluster, sophomores in one cluster,
etc.), then randomly sample three clusters and survey all students in those clusters.

1.18 Flawed reasoning. Identify the flaw(s) in reasoning in the following scenarios. Explain what
the individuals in the study should have done differently if they wanted to make such conclusions.

(a) Students at an elementary school are given a questionnaire that they are asked to return after
their parents have completed it. One of the questions asked is, “Do you find that your work
schedule makes it difficult for you to spend time with your kids after school?" Of the parents
who replied, 85% said “no". Based on these results, the school officials conclude that a great
majority of the parents have no difficulty spending time with their kids after school.

(b) A survey is conducted on a simple random sample of 1,000 women who recently gave birth,
asking them about whether or not they smoked during pregnancy. A follow-up survey asking
if the children have respiratory problems is conducted 3 years later, however, only 567 of these
women are reached at the same address. The researcher reports that these 567 women are
representative of all mothers.

(c) An orthopedist administers a questionnaire to 30 of his patients who do not have any joint
problems and finds that 20 of them regularly go running. He concludes that running decreases
the risk of joint problems.

1.19 City council survey. A city council has requested a household survey be conducted in a sub-
urban area of their city. The area is broken into many distinct and unique neighborhoods, some
including large homes, some with only apartments, and others a diverse mixture of housing struc-
tures. Identify the sampling methods described below, and comment on whether or not you think
they would be effective in this setting.

(a) Randomly sample 50 households from the city.

(b) Divide the city into neighborhoods, and sample 20 households from each neighborhood.

(c) Divide the city into neighborhoods, randomly sample 10 neighborhoods, and sample all house-
holds from those neighborhoods.

76data:ciaFactbook.
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(d) Divide the city into neighborhoods, randomly sample 10 neighborhoods, and then randomly
sample 20 households from those neighborhoods.

(e) Sample the 200 households closest to the city council offices.

1.20 Reading the paper. Below are excerpts from two articles published in the NY Times:

(a) An article titled Risks: Smokers Found More Prone to Dementia states the following:77

“Researchers analyzed data from 23,123 health plan members who participated in a voluntary exam
and health behavior survey from 1978 to 1985, when they were 50-60 years old. 23 years later, about
25% of the group had dementia, including 1,136 with Alzheimer’s disease and 416 with vascular de-
mentia. After adjusting for other factors, the researchers concluded that pack-a-day smokers were 37%
more likely than nonsmokers to develop dementia, and the risks went up with increased smoking; 44%
for one to two packs a day; and twice the risk for more than two packs."

Based on this study, can it be concluded that smoking causes dementia later in life? Explain
your reasoning.

(b) Another article titled The School Bully Is Sleepy states the following:78

“The University of Michigan study, collected survey data from parents on each child’s sleep habits and
asked both parents and teachers to assess behavioral concerns. About a third of the students studied
were identified by parents or teachers as having problems with disruptive behavior or bullying. The
researchers found that children who had behavioral issues and those who were identified as bullies
were twice as likely to have shown symptoms of sleep disorders."

A friend of yours who read the article says, “The study shows that sleep disorders lead to bully-
ing in school children." Is this statement justified? If not, how best can you describe the conclu-
sion that can be drawn from this study?

1.21 Alcohol consumption and STIs. An observational study published last year in The American
Journal of Preventive Medicine investigated the effects of an increased alcohol sales tax in Maryland on
the rates of gonorrhea and chlamydia.79 After a tax increase from 6% to 9% in 2011, the statewide
gonorrhea rate declined by 24%, the equivalent of 1,600 cases per year. In a statement to the New
York Times, the lead author of the paper was quoted saying, "Policy makers should consider raising
liquor taxes if they’re looking for ways to prevent sexually transmitted infections. In the year and a
half following the alcohol tax rise in Maryland, this prevented 2,400 cases of gonorrhea and saved
half a million dollars in health care costs." Explain whether the lead author’s statement is accurate.

1.9.4 Numerical data
1.22 Medians and IQRs. For each part, compare distributions (1) and (2) based on their medians
and IQRs. You do not need to calculate these statistics; simply state how the medians and IQRs
compare. Make sure to explain your reasoning.

(a) (1) 3, 5, 6, 7, 9
(2) 3, 5, 6, 7, 20

(b) (1) 3, 5, 6, 7, 9
(2) 3, 5, 8, 7, 9

(c) (1) 1, 2, 3, 4, 5
(2) 6, 7, 8, 9, 10

(d) (1) 0, 10, 50, 60, 100
(2) 0, 100, 500, 600, 1000

1.23 Means and SDs. For each part, compare distributions (1) and (2) based on their means and
standard deviations. You do not need to calculate these statistics; simply state how the means and
the standard deviations compare. Make sure to explain your reasoning. Hint: It may be useful to
sketch dot plots of the distributions.

77news:smokingDementia.
78news:bullySleep.
79S. Staras, et al., 2015. Maryland Alcohol Sales Tax and Sexually Transmitted Infections. The American

Journal of Preventive Medicine 50: e73-e80.
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(a) (1) 3, 5, 5, 5, 8, 11, 11, 11, 13
(2) 3, 5, 5, 5, 8, 11, 11, 11, 20

(b) (1) -20, 0, 0, 0, 15, 25, 30, 30
(2) -40, 0, 0, 0, 15, 25, 30, 30

(c) (1) 0, 2, 4, 6, 8, 10
(2) 20, 22, 24, 26, 28, 30

(d) (1) 100, 200, 300, 400, 500
(2) 0, 50, 300, 550, 600

1.24 Mix-and-match. Describe the distribution in the histograms below and match them to the
box plots.
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1.25 Air quality. Daily air quality is measured by the air quality index (AQI) reported by the
Environmental Protection Agency. This index reports the pollution level and what associated health
effects might be a concern. The index is calculated for five major air pollutants regulated by the
Clean Air Act and takes values from 0 to 300, where a higher value indicates lower air quality. AQI
was reported for a sample of 91 days in 2011 in Durham, NC. The relative frequency histogram
below shows the distribution of the AQI values on these days.80

(a) Based on the histogram, describe the distribution
of daily AQI.

(b) Estimate the median AQI value of this sample.
(c) Would you expect the mean AQI value of this sam-

ple to be higher or lower than the median? Explain
your reasoning.

Daily AQI
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0.1

0.15
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1.26 Nursing home residents. Since states with larger numbers of elderly residents would natu-
rally have more nursing home residents, the number of nursing home residents in a state is often
adjusted for the number of people 65 years of age or order (65+). That adjustment is usually given
as the number of nursing home residents age 65+ per 1,000 members of the population age 65+.
For example, a hypothetical state with 200 nursing home residents age 65+ and 50,000 people age
65+ would have the same adjusted number of residents as a state with 400 residents and a total age
65+ population of 100,000 residents: 4 residents per 1,000.

Use the two plots below to answer the following questions. Both plots show the distribution
of the number of nursing home residents per 1,000 members of the population 65+ (in each state).

80data:durhamAQI:2011.
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(a) Is the distribution of adjusted number of nursing home residents symmetric or skewed? Are
there any states that could be considered outliers?

(b) Which plot is more informative: the histogram or the boxplot? Explain your answer.

(c) What factors might influence the substantial amount of variability among different states? This
question cannot be answered from the data; speculate using what you know about the demo-
graphics of the United States.

1.27 Eating disorders. In a 2003 survey examining weights and body image concerns among
young Korean women, researchers administered a questionnaire to 264 female college students in
Seoul, South Korea. The survey was designed to assess excessive concern with weight and dieting,
consisting of questions such as "If I gain a pound, I worry that I will keep gaining." Questionnaires
were given numerical scores on the Drive for Thinness Scale. Roughly speaking, a score of 15 is
typical of Western women with eating disorders, but unusually high (90th) percentile for other
Western women.

dietary concern score
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60

(a) Describe the shape and spread of the scores for
these Korean students.

(b) Which measures of center and spread will provide
a better summary of the data?

1.28 Midrange. The midrange of a distribution is defined as the average of the maximum and the
minimum of that distribution. Is this statistic robust to outliers and extreme skew? Explain your
reasoning.

1.9.5 Categorical data

1.29 Views on immigration. 910 randomly sampled registered voters from Tampa, FL were asked
if they thought workers who have illegally entered the US should be (i) allowed to keep their jobs
and apply for US citizenship, (ii) allowed to keep their jobs as temporary guest workers but not
allowed to apply for US citizenship, or (iii) lose their jobs and have to leave the country. The results
of the survey by political ideology are shown below.81

81survey:immigFL:2012.
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Political ideology
Conservative Moderate Liberal Total

(i) Apply for citizenship 57 120 101 278
(ii) Guest worker 121 113 28 262Response
(iii) Leave the country 179 126 45 350
(iv) Not sure 15 4 1 20
Total 372 363 175 910

(a) What percent of these Tampa, FL voters identify themselves as conservatives?
(b) What percent of these Tampa, FL voters are in favor of the citizenship option?
(c) What percent of these Tampa, FL voters identify themselves as conservatives and are in favor of

the citizenship option?
(d) What percent of these Tampa, FL voters who identify themselves as conservatives are also in

favor of the citizenship option? What percent of moderates share this view? What percent of
liberals share this view?

1.30 Flossing habits. Suppose that an anonymous questionnaire is given to patients at a dentist’s
office once they arrive for an appointment. One of the questions asks "How often do you floss?", and
four answer options are provided: a) at least twice a day, b) at least once a day, c) a few times a week,
and d) a few times a month. At the end of a week, the answers are tabulated: 31 individuals chose
answer a), 55 chose b), 39 chose c), and 12 chose d).

(a) Describe how these data could be numerically and graphically summarized.
(b) Assess whether the results of this survey can be generalized to provide information about floss-

ing habits in the general population.

1.9.6 Relationships between two variables
1.31 Mammal life spans. Data were collected on life spans (in years) and gestation lengths (in
days) for 62 mammals. A scatterplot of life span versus length of gestation is shown below.82

(a) Does there seem to be an association be-
tween length of gestation and life span?
If so, what type of association? Explain
your reasoning.

(b) What type of an association would you
expect to see if the axes of the plot were
reversed, i.e. if we plotted length of ges-
tation versus life span?
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1.32 Associations. Indicate which of the plots show a

(a) positive association
(b) negative association
(c) no association

Also determine if the positive and
negative associations are linear or
nonlinear. Each part may refer to
more than one plot.
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1.33 Adolescent fertility. Data are available on the number of children born to women aged 15-
19 from 189 countries in the world for the years 1997, 2000, 2002, 2005, and 2006. The data are
defined using a scaling similar to that used for the nursing home data in Exercise 1.26. The values
for the annual adolescent fertility rates represent the number of live births among women aged
15-19 per 1,000 female members of the population of that age.
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(a) In 2006, the standard deviation of the distribution of adolescent fertility is 75.73. Write a sen-
tence explaining the 75th percentile in the context of this data.

(b) For the years 2000-2006, data are not available for Iraq. Why might those observations be
missing? Would the five-number summary have been affected very much if the values had been
available?

(c) From the side-by-side boxplots shown above, describe how the distribution of fertility rates
changes over time. Is there a trend?
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1.34 Smoking and stenosis. Researchers collected data from an observational study to investigate
the association between smoking status and the presence of aortic stenosis, a narrowing of the aorta
that impedes blood flow to the body.

Smoking Status
Non-smoker Smoker Total

Absent 67 43 110Disease Status
Present 54 51 105
Total 121 94 215

(a) What percentage of the 215 participants were both smokers and had aortic stenosis? This per-
centage is one component of the joint distribution of smoking and stenosis; what are the other
three numbers of the joint distribution?

(b) Among the smokers, what proportion have aortic stenosis? This number is a component of
the conditional distribution of stenosis for the two categories of smokers. What proportion of
non-smokers have aortic stenosis?

(c) In this context, relative risk is the ratio of the proportion of smokers with stenosis to the pro-
portion of non-smokers with stenosis. Relative risks greater than 1 indicate that smokers are
at a higher risk for aortic stenosis than non-smokers; relative risks of 1.2 or higher are gener-
ally considered cause for alarm. Calculate the relative risk for the 215 participants, comparing
smokers to non-smokers. Does there seem to be evidence that smoking is associated with an
increased probability of stenosis?

1.35 Anger and cardiovascular health. Trait anger is defined as a relatively stable personality
trait that is manifested in the frequency, intensity, and duration of feelings associated with anger.
People with high trait anger have rage and fury more often, more intensely, and with long-laster
episodes than people with low trait anger. It is thought that people with high trait anger might be
particularly susceptible to coronary heart disease; 12,986 participants were recruited for a study
examining this hypothesis. Participants were followed for five years. The following table shows
data for the participants identified as having normal blood pressure (normotensives).

Trait Anger Score
Low Moderate High Total

Yes 53 110 27 190CHD Event
No 3057 4704 606 8284
Total 3110 4731 633 8474

(a) What percentage of participants have moderate anger scores?
(b) What percentage of individuals who experienced a CHD event have moderate anger scores?
(c) What percentage of participants with high trait anger scores experienced a CHD event (i.e.,

heart attack)?
(d) What percentage of participants with low trait anger scores experienced a CHD event?
(e) Are individuals with high trait anger more likely to experience a CHD event than individuals

with low trait anger? Calculate the relative risk of a CHD event for individuals with high trait
anger compared to low trait anger.

(f) Researchers also collected data on various participant traits, such as level of blood cholesterol
(measured in mg/dL). What graphical summary might be useful for examining how blood
cholesterol level differs between anger groups?

1.9.7 Exploratory data analysis
Since exploratory data analysis relies heavily on the use of computation, refer to the companion text
for exercises related to this section.



Chapter 2

Probability

What are the chances that a woman with an abnormal mammogram has breast cancer?
What is the probability that a woman with an abnormal mammogram has breast cancer,
given that she is in her 40’s? What is the likelihood that out of 100 women who undergo
a mammogram and test positive for breast cancer, at least one of the women has received
a false positive result?

These questions use the language of probability to express statements about out-
comes that may or may not occur. More specifically, probability is used to quantify the
level of uncertainty about each outcome. Like all mathematical tools, probability becomes
easier to understand and work with once important concepts and terminology have been
formalized.

This chapter introduces that formalization, using two types of examples. One set of
examples uses settings familiar to most people – rolling dice or picking cards from a deck.
The other set of examples draws from medicine, biology, and public health, reflecting the
contexts and language specific to those fields. The approaches to solving these two types
of problems are surprisingly similar, and in both cases, seemingly difficult problems can
be solved in a series of reliable steps.

2.1 Defining probability

2.1.1 Some examples

The rules of probability can easily be modeled with classic scenarios, such as flipping
coins or rolling dice. When a coin is flipped, there are only two possible outcomes, heads
or tails. With a fair coin, each outcome is equally likely; thus, the chance of flipping heads
is 1/2, and likewise for tails. The following examples deal with rolling a die or multiple
dice; a die is a cube with six faces numbered 1, 2, 3, 4, 5, and 6.

 Example 2.1 What is the chance of getting 1 when rolling a die?

If the die is fair, then there must be an equal chance of rolling a 1 as any other possi-
ble number. Since there are six outcomes, the chance must be 1-in-6 or, equivalently,
1/6.

 Example 2.2 What is the chance of not rolling a 2?

81
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Not rolling a 2 is the same as getting a 1, 3, 4, 5, or 6, which makes up five of the six
equally likely outcomes and has probability 5/6.

 Example 2.3 Consider rolling two fair dice. What is the chance of getting two 1s?

If 1/6th of the time the first die is a 1 and 1/6th of those times the second die is also a
1, then the chance that both dice are 1 is (1/6)(1/6) or 1/36.

Probability can also be used to model less artificial contexts, such as to predict the
inheritance of genetic disease. Cystic fibrosis (CF) is a life-threatening genetic disorder
caused by mutations in the CFTR gene located on chromosome 7. Defective copies of
CFTR can result in the reduced quantity and function of the CFTR protein, which leads
to the buildup of thick mucus in the lungs and pancreas.1 CF is an autosomal recessive
disorder; an individual only develops CF if they have inherited two affected copies of
CFTR. Individuals with one normal (wild-type) copy and one defective (mutated) copy
are known as carriers; they do not develop CF, but may pass the disease-causing mutation
onto their offspring.

 Example 2.4 Suppose that both members of a couple are CF carriers. What is the
probability that a child of this couple will be affected by CF? Assume that a parent
has an equal chance of passing either gene copy (i.e., allele) to a child.

Solution 1: Enumerate all of the possible outcomes and exploit the fact that the outcomes
are equally likely, as in Example 2.1. Figure 2.1 shows the four possible genotypes
for a child of these parents. The paternal chromosome is in blue and the maternal
chromosome in green, while chromosomes with the wild-type and mutated versions
of CFTR are marked with + and −, respectively. The child is only affected if they
have genotype (−/−), with two mutated copies of CFTR. Each of the four outcomes
occurs with equal likelihood, so the child will be affected with probability 1-in-4,
or 1/4. It is important to recognize that the child being an unaffected carrier (+/−)
consists of two distinct outcomes, not one.

Solution 2: Calculate the proportion of outcomes that produce an affected child, as in
Example 2.3. During reproduction, one parent will pass along an affected copy half
of the time. When the child receives an affected allele from one parent, half of the
those times, they will also receive an affected allele from the other parent. Thus, the
proportion of times the child will have two affected copies is (1/2)× (1/2) = 1/4.

⊙
Guided Practice 2.5 Suppose the father has CF and the mother is an unaffected
carrier. What is the probability that their child will be affected by the disease?2

2.1.2 Probability

Probability is used to assign a level of uncertainty to the outcomes of phenomena that
either happen randomly (e.g. rolling dice, inheriting of disease alleles), or appear random
because of a lack of understanding about exactly how the phenomenon occurs (e.g. a
woman in her 40’s developing breast cancer). Modeling these complex phenomena as

1The CFTR protein is responsible for transporting sodium and chloride ions across cell membranes.
2Since the father has CF, he must have two affected copies; he will always pass along a defective copy of the

gene. Since the mother will pass along a defective copy half of the time, the child will be affected half of the
time, or with probability (1)× (1/2) = 1/2.
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Figure 2.1: Pattern of CF inheritance for a child of two unaffected carriers

random can be useful, and in either case, the interpretation of probability is the same: the
chance that some event will occur.

Mathematicians and philosophers have struggled for centuries to arrive at a clear
statement of how probability is defined, or what it means. The most common definition
is used in this text.

Probability

The probability of an outcome is the proportion of times the outcome would
occur if the random phenomenon could be observed an infinite number of times.

This definition of probability can be illustrated by simulation. Suppose a die is rolled
many times. Let p̂n be the proportion of outcomes that are 1 after the first n rolls. As
the number of rolls increases, p̂n will converge to the probability of rolling a 1, p = 1/6.
Figure 2.2 shows this convergence for 100,000 die rolls. The tendency of p̂n to stabilize
around p is described by the Law of Large Numbers. The behavior shown in Figure 2.2
matches most people’s intuition about probability, but proving mathematically that the
behavior is always true is surprisingly difficult and beyond the level of this text.

Occasionally the proportion veers off from the probability and appear to defy the
Law of Large Numbers, as p̂n does many times in Figure 2.2. However, the likelihood of
these large deviations becomes smaller as the number of rolls increases.
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n (number of rolls)

1 10 100 1,000 10,000 100,000

0.0

0.1

0.2

0.3

p̂n

Figure 2.2: The fraction of die rolls that are 1 at each stage in a simulation.
The proportion tends to get closer to the probability 1/6 ≈ 0.167 as the
number of rolls increases.

Law of Large Numbers

As more observations are collected, the proportion p̂n of occurrences with a par-
ticular outcome converges to the probability p of that outcome.

Probability is defined as a proportion, and it always takes values between 0 and 1
(inclusively). It may also be expressed as a percentage between 0% and 100%. The prob-
ability of rolling a 1, p, can also be written as P (rolling a 1).

This notation can be further abbreviated. For instance, if it is clear that the process
is “rolling a die”, P (rolling a 1) can be written as P (1). There also exists a notation for an
event itself; the event A of rolling a 1 can be written as A = {rolling a 1}, with associated
probability P (A).

P (A)
Probability of
outcome A

2.1.3 Disjoint or mutually exclusive outcomes

Two outcomes are disjoint or mutually exclusive if they cannot both happen at the same
time. When rolling a die, the outcomes 1 and 2 are disjoint since they cannot both occur.
However, the outcomes 1 and “rolling an odd number” are not disjoint since both occur if
the outcome of the roll is a 1.3

What is the probability of rolling a 1 or a 2? When rolling a die, the outcomes 1 and 2
are disjoint. The probability that one of these outcomes will occur is computed by adding
their separate probabilities:

P (1 or 2) = P (1) + P (2) = 1/6 + 1/6 = 1/3

What about the probability of rolling a 1, 2, 3, 4, 5, or 6? Here again, all of the outcomes

3The terms disjoint and mutually exclusive are equivalent and interchangeable.
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are disjoint, so add the individual probabilities:

P (1 or 2 or 3 or 4 or 5 or 6)

= P (1) + P (2) + P (3) + P (4) + P (5) + P (6)

= 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1.

Addition Rule of disjoint outcomes

If A1 and A2 represent two disjoint outcomes, then the probability that either one
of them occurs is given by

P (A1 or A2) = P (A1) + P (A2)

If there are k disjoint outcomes A1, ..., Ak , then the probability that either one of
these outcomes will occur is

P (A1) + P (A2) + · · ·+ P (Ak) (2.6)

⊙
Guided Practice 2.7 Consider the CF example. Is the event that two carriers of
CF have a child that is also a carrier represented by mutually exclusive outcomes?
Calculate the probability of this event.4

Probability problems often deal with sets or collections of outcomes. Let A represent
the event in which a die roll results in 1 or 2 and B represent the event that the die roll is
a 4 or a 6. We write A as the set of outcomes {1, 2} and B = {4, 6}. These sets are commonly
called events. Because A and B have no elements in common, they are disjoint events. A
and B are represented in Figure 2.3.

The Addition Rule applies to both disjoint outcomes and disjoint events. The proba-
bility that one of the disjoint events A or B occurs is the sum of the separate probabilities:

P (A or B) = P (A) + P (B) = 1/3 + 1/3 = 2/3⊙
Guided Practice 2.8 (a) Verify the probability of event A, P (A), is 1/3 using the
Addition Rule. (b) Do the same for event B.5⊙
Guided Practice 2.9 (a) Using Figure 2.3 as a reference, which outcomes are repre-
sented by eventD? (b) Are events B andD disjoint? (c) Are eventsA andD disjoint?6

⊙
Guided Practice 2.10 In Guided Practice 2.9, you confirmed B and D from Fig-
ure 2.3 are disjoint. Compute the probability that event B or event D occurs.7

4Yes, there are two mutually exclusive outcomes for which a child of two carriers can also be a carrier - a
child can either receive an affected copy of CFTR from the mother and a normal copy from the father, or vice
versa (since each parent can only contribute one allele). Thus, the probability that a child will be a carrier is 1/4
+ 1/4 = 1/2.

5(a) P (A) = P (1 or 2) = P (1) + P (2) = 1
6 + 1

6 = 2
6 = 1

3 . (b) Similarly, P (B) = 1/3.
6(a) Outcomes 2 and 3. (b) Yes, events B and D are disjoint because they share no outcomes. (c) The events

A and D share an outcome in common, 2, and so are not disjoint.
7Since B and D are disjoint events, use the Addition Rule: P (B or D) = P (B) + P (D) = 1

3 + 1
3 = 2

3 .
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Figure 2.3: Three events, A, B, and D, consist of outcomes from rolling a
die. A and B are disjoint since they do not have any outcomes in common.

2.1.4 Probabilities when events are not disjoint

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for two or
three variables, attributes, or random processes. The Venn diagram in Figure 2.5 uses one
oval to represent diamonds and another to represent face cards (the cards labeled jacks,
queens, and kings); if a card is both a diamond and a face card, it falls into the intersection
of the ovals.

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠

Table 2.4: A regular deck of 52 cards is split into four suits: ♣ (club), ♦
(diamond), ♥ (heart), ♠ (spade). Each suit has 13 labeled cards: 2, 3, ...,
10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique
combination of a suit and a label, e.g. 4♥ and J♣.

⊙
Guided Practice 2.11 (a) What is the probability that a randomly selected card is
a diamond? (b) What is the probability that a randomly selected card is a face card?8

Let A represent the event that a randomly selected card is a diamond and B represent
the event that it is a face card. Events A and B are not disjoint – the cards J♦, Q♦, and K♦
fall into both categories.

8(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal chance
of being drawn, so the probability that a randomly selected card is a diamond is P (♦) = 13

52 = 0.250. (b) Likewise,
there are 12 face cards, so P (face card) = 12

52 = 3
13 = 0.231.
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Figure 2.5: A Venn diagram for diamonds and face cards.

As a result, adding the probabilities of the two events together is not sufficient to
calculate P (A or B):

P (A) + P (B) = P (♦) + P (face card) = 12/52 + 13/52

Instead, a small modification is necessary. The three cards that are in both events were
counted twice. To correct the double counting, subtract the probability that both events
occur:

P (A or B) = P (face card or ♦)
= P (face card) + P (♦)− P (face card and ♦) (2.12)

= 13/52 + 12/52− 3/52

= 22/52 = 11/26

Equation (2.12) is an example of the General Addition Rule.

General Addition Rule

If A and B are any two events, disjoint or not, then the probability that at least
one of them will occur is

P (A or B) = P (A) + P (B)− P (A and B) (2.13)

where P (A and B) is the probability that both events occur.

Note that in the language of statistics, "or" is inclusive such that A or B occurs means
A, B, or both A and B occur.⊙

Guided Practice 2.14 (a) If A and B are disjoint, describe why this implies P (A
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and B) = 0. (b) Using part (a), verify that the General Addition Rule simplifies to the
Addition Rule for disjoint events if A and B are disjoint.9⊙
Guided Practice 2.15 Human immunodeficiency virus (HIV) and tuberculosis (TB)
affect substantial proportions of the population in certain areas of the develop-
ing world. Individuals sometimes are co-infected (i.e., have both diseases). Chil-
dren of HIV-infected mothers may have HIV and TB can spread from one fam-
ily member to another. In a mother-child pair, let A = {the mother has HIV}, B =
{the mother has TB}, C = {the child has HIV}, D = {the child has TB}. Write out the
definitions of the events A or B, A and B, A and C, A or D.10

2.1.5 Probability distributions

A probability distribution consists of all disjoint outcomes and their associated proba-
bilities. Table 2.6 shows the probability distribution for the sum of two dice.

Dice sum 2 3 4 5 6 7 8 9 10 11 12
Probability 1

36
2

36
3

36
4

36
5

36
6

36
5

36
4

36
3

36
2

36
1

36

Table 2.6: Probability distribution for the sum of two dice.

Rules for a probability distribution

A probability distribution is a list of all possible outcomes and their associated
probabilities that satisfies three rules:

1. The outcomes listed must be disjoint.

2. Each probability must be between 0 and 1.

3. The probabilities must total to 1.

Probability distributions can be summarized in a bar plot. The probability distribu-
tion for the sum of two dice is shown in Figure 2.7, with the bar heights representing the
probabilities of outcomes.

Figure 2.8 shows a bar plot of the birth weight data for 3,999,386 live births in the
United States in 2010, for which total counts have been converted to proportions. Since
birth weight trends do not change much between years, it is valid to consider the plot as
a representation of the probability distribution of birth weights for upcoming years, such
as 2017. The data are available as part of the US CDC National Vital Statistics System.11

The graph shows that while most babies born weighed between 2000 and 5000 grams
(2 to 5 kg), there were both small (less than 1000 grams) and large (greater than 5000
grams) babies. Pediatricians consider birth weights between 2.5 and 5 kg as normal.12 A

9(a) If A and B are disjoint, A and B can never occur simultaneously. (b) If A and B are disjoint, then the last
term of Equation (2.13) is 0 (see part (a)) and we are left with the Addition Rule for disjoint events.

10Events A or B: the mother has HIV, the mother has TB, or the mother has both HIV and TB. Events A and
B: the mother has both HIV and TB. Events A and C: The mother has HIV and the child has HIV. A or D: The
mother has HIV, the child has TB, or the mother has HIV and the child has TB.

11http://205.207.175.93/vitalstats/ReportFolders/reportFolders.aspx
12https://www.nlm.nih.gov/medlineplus/birthweight.html

http://205.207.175.93/vitalstats/ReportFolders/reportFolders.aspx
https://www.nlm.nih.gov/medlineplus/birthweight.html
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Figure 2.7: The probability distribution of the sum of two dice.

probability distribution gives a sense of which outcomes can be considered unusual (i.e.,
outcomes with low probability).

499 or less 500 − 999 1000 − 1499 1500 − 1999 2000 − 2499 2500 − 2999 3000 − 3499 3500 − 3999 4000 − 4499 4500 − 4999 5000 − 8165 Not stated
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Figure 2.8: Distribution of birth weights (in grams) of babies born in the
US in 2010

Continuous probability distributions

Probability distributions for events that take on a finite number of possible outcomes,
such as the sum of two dice rolls, are referred to as discrete probability distributions.

Consider how the probability distribution for adult heights in the US might best be
represented. Unlike the sum of two dice rolls, height can occupy any value over a contin-
uous range. Thus, height has a continuous probability distribution, which is specified
by a probability density function rather than a table; Figure 2.9 shows a histogram of the
height for 3 million US adults from the mid-1990’s, with an overlaid density curve.13

Just as in the discrete case, the probabilities of all possible outcomes must still sum
to 1; the total area under a probability density function equals 1.

13This sample can be considered a simple random sample from the US population. It relies on the USDA
Food Commodity Intake Database.
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height (cm)
140 160 180 200

Figure 2.9: The continuous probability distribution of heights for US
adults.

 Example 2.16 Estimate the probability that a randomly selected adult from the US
population has height between 180 and 185 centimeters. In Figure 2.10(a), the two
bins between 180 and 185 centimeters have counts of 195,307 and 156,239 people.

height (cm)
140 160 180 200

(a)

height (cm)
140 160 180 200

(b)

Figure 2.10: (a) A histogram with bin sizes of 2.5 cm, with bars between
180 and 185 cm shaded. (b) Density for heights in the US adult population
with the area between 180 and 185 cm shaded.

Find the proportion of the histogram’s area that falls in the range 180 cm and 185:
add the heights of the bins in the range and divide by the sample size:

195,307 + 156,239
3,000,000

= 0.1172

The probability can be calculated precisely with the use of computing software, by
finding the area of the shaded region under the curve between 180 and 185:

P (height between 180 and 185) = area between 180 and 185 = 0.1157

 Example 2.17 What is the probability that a randomly selected person is exactly
180 cm? Assume that height can be measured perfectly.

This probability is zero. A person might be close to 180 cm, but not exactly 180 cm
tall. This also coheres with the definition of probability as an area under the density
curve; there is no area captured between 180 cm and 180 cm.
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⊙
Guided Practice 2.18 Suppose a person’s height is rounded to the nearest centime-
ter. Is there a chance that a random person’s measured height will be 180 cm?14

2.1.6 Complement of an event

Rolling a die produces a value in the set {1, 2, 3, 4, 5, 6}. This set of all possible outcomes
is called the sample space (S) for rolling a die.

S
Sample space

Let D = {2, 3} represent the event that the outcome of a die roll is 2 or 3. The comple-
ment of D represents all outcomes in the sample space that are not in D, which is denoted

Ac
Complement
of outcome A

by Dc = {1, 4, 5, 6}. That is, Dc is the set of all possible outcomes not already included in
D. Figure 2.11 shows the relationship between D, Dc, and the sample space S.

Figure 2.11: Event D = {2, 3} and its complement, Dc = {1, 4, 5, 6}. S rep-
resents the sample space, which is the set of all possible events.

⊙
Guided Practice 2.19 (a) Compute P (Dc) = P (rolling a 1, 4, 5, or 6). (b) What is
P (D) + P (Dc)?15⊙
Guided Practice 2.20 Events A = {1, 2} and B = {4, 6} are shown in Figure 2.3 on
page 85. (a) Write out what Ac and Bc represent. (b) Compute P (Ac) and P (Bc).
(c) Compute P (A) + P (Ac) and P (B) + P (Bc).16

A complement of an event A is constructed to have two very important properties:
every possible outcome not in A is in Ac, and A and Ac are disjoint. If every possible
outcome not in A is in Ac, this implies that

P (A or Ac) = 1. (2.21)

14This has positive probability. Anyone between 179.5 cm and 180.5 cm will have a measured height of 180
cm. This a more realistic scenario to encounter in practice versus Example 2.17.

15(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3. (b) We can
also see that P (D) = 1

6 + 1
6 = 1/3. Since D and Dc are disjoint, P (D) + P (Dc) = 1.

16Brief solutions: (a) Ac = {3, 4, 5, 6} and Bc = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint, add the
individual outcome probabilities to get P (Ac) = 2/3 and P (Bc) = 2/3. (c) A and Ac are disjoint, and the same is
true of B and Bc . Therefore, P (A) + P (Ac) = 1 and P (B) + P (Bc) = 1.
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Then, by Addition Rule for disjoint events,

P (A or Ac) = P (A) + P (Ac). (2.22)

Combining Equations (2.21) and (2.22) yields a useful relationship between the probabil-
ity of an event and its complement.

Complement

The complement of event A is denoted Ac, and Ac represents all outcomes not
in A. A and Ac are mathematically related:

P (A) + P (Ac) = 1, i.e. P (A) = 1− P (Ac) (2.23)

In simple examples, computing either A or Ac is feasible in a few steps. However, as
problems grow in complexity, using the relationship between an event and its complement
can be a useful strategy.⊙

Guided Practice 2.24 Let A represent the event of selecting an adult from the US
population with height between 180 and 185 cm, as calculated in Example 2.16.
What is P (Ac)?17

⊙
Guided Practice 2.25 Let A represent the event in which two dice are rolled and
their total is less than 12. (a) What does the event Ac represent? (b) Determine P (Ac)
from Table 2.6 on page 87. (c) Determine P (A).18

⊙
Guided Practice 2.26 Consider again the probabilities from Table 2.6 and rolling
two dice. Find the following probabilities: (a) The sum of the dice is not 6. (b) The
sum is at least 4. That is, determine the probability of the event B = {4, 5, ..., 12}. (c)
The sum is no more than 10. That is, determine the probability of the event D = {2,
3, ..., 10}.19

2.1.7 Independence

Just as variables and observations can be independent, random phenomena can also be
independent. Two processes are independent if knowing the outcome of one provides no
information about the outcome of the other. For instance, flipping a coin and rolling a
die are two independent processes – knowing that the coin lands heads up does not help
determine the outcome of the die roll. On the other hand, stock prices usually move up
or down together, so they are not independent.

Example 2.3 provides a basic example of two independent processes: rolling two
dice. What is the probability that both will be 1? Suppose one of the dice is blue and
the other green. If the outcome of the blue die is a 1, it provides no information about

17P (Ac) = 1− P (A) = 1− 0.1157 = 0.8843.
18(a) The complement of A: when the total is equal to 12. (b) P (Ac) = 1/36. (c) Use the probability of the

complement from part (b), P (Ac) = 1/36, and Equation (2.23): P (less than 12) = 1− P (12) = 1− 1/36 = 35/36.
19(a) First find P (6) = 5/36, then use the complement: P (not 6) = 1− P (6) = 31/36.

(b) First find the complement, which requires much less effort: P (2 or 3) = 1/36 + 2/36 = 1/12. Then calculate
P (B) = 1− P (Bc) = 1− 1/12 = 11/12.

(c) As before, finding the complement is the more direct way to determine P (D). First find P (Dc) = P (11 or
12) = 2/36 + 1/36 = 1/12. Then calculate P (D) = 1− P (Dc) = 11/12.
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the outcome of the green die. This question was first encountered in Example 2.3: 1/6th

of the time the blue die is a 1, and 1/6th of those times the green die will also be 1. This
is illustrated in Figure 2.12. Because the rolls are independent, the probabilities of the
corresponding outcomes can be multiplied to obtain the final answer: (1/6)(1/6) = 1/36.
This can be generalized to many independent processes.

Figure 2.12: 1/6th of the time, the first roll is a 1. Then 1/6th of those times,
the second roll will also be a 1.

Complicated probability problems, such as those that arise in biology or medicine,
are often solved with the simple ideas used in the dice example. For instance, indepen-
dence was used implicitly in the second solution to Example 2.4, when calculating the
probability that two carriers will have an affected child with cystic fibrosis. Genes are
typically passed along from the mother and father independently. This allows for the as-
sumption that, on average, half of the offspring who receive a mutated gene copy from the
mother will also receive a mutated copy from the father.

⊙
Guided Practice 2.27 What if there were also a red die independent of the other
two? What is the probability of rolling the three dice and getting all 1s? 20

⊙
Guided Practice 2.28 Three US adults are randomly selected. The probability the
height of a single adult is between 180 and 185 cm is 0.1157.21

(a) What is the probability that all three are between 180 and 185 cm tall?

(b) What is the probability that none are between 180 and 185 cm tall?

20The same logic applies from Example 2.3. If 1/36th of the time the blue and green dice are both 1, then
1/6th of those times the red die will also be 1, so multiply:

P (blue = 1 and green = 1 and red = 1) = P (blue = 1)P (green = 1)P (red = 1)

= (1/6)(1/6)(1/6) = 1/216

21Brief answers: (a) 0.1157× 0.1157× 0.1157 = 0.0015. (b) (1− 0.1157)3 = 0.692
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Multiplication Rule for independent processes

If A and B represent events from two different and independent processes, then
the probability that both A and B occur is given by:

P (A and B) = P (A)P (B) (2.29)

Similarly, if there are k events A1, ..., Ak from k independent processes, then the
probability they all occur is

P (A1)P (A2) · · ·P (Ak)

 Example 2.30 Mandatory drug testing. Mandatory drug testing in the workplace
is common practice for certain professions, such as air traffic controllers and trans-
portation workers. A false positive in a drug screening test occurs when the test in-
correctly indicates that a screened person is an illegal drug user. Suppose a manda-
tory drug test has a false positive rate of 1.2% (i.e., has probability 0.012 of indi-
cating that an employee is using illegal drugs when that is not the case). Given 150
employees who are in reality drug free, what is the probability that at least one will
(falsely) test positive? Assume that the outcome of one drug test has no effect on the
others.

First, note that the complement of at least 1 person testing positive is that no one
tests positive (i.e., all employees test negative). The multiplication rule can then be
used to calculate the probability of 150 negative tests.

P (At least 1 "+") = P (1 or 2 or 3 . . . or 150 are "+")

= 1− P (None are "+")

= 1− P (150 are "-")

= 1− P ("-")150

= 1− (0.988)150 = 1− 0.16 = 0.84.

Even when using a test with a small probability of a false positive, the company is
more than 80% likely to incorrectly claim at least one employee is an illegal drug
user!⊙
Guided Practice 2.31 Because of the high likelihood of at least one false positive in
company wide drug screening programs, an individual with a positive test is almost
always re-tested with a different screening test: one that is more expensive than the
first, but has a lower false positive probability. Suppose the second test has a false
positive rate of 0.8%. What is the probability that an employee who is not using
illegal drugs will test positive on both tests?22

22The outcomes of the two tests are independent of one another; P (A and B) = P (A) × P (B), where events A
and B are the results of the two tests. The probability of a false positive with the first test is 0.012 and 0.008 with
the second. Thus, the probability of an employee who is not using illegal drugs testing positive on both tests is
0.012× 0.008 = 9.6× 10−5
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Figure 2.13: Inheritance of ABO blood groups.

 Example 2.32 ABO blood groups. There are four different common blood types
(A, B, AB, and O), which are determined by the presence of certain antigens located
on cell surfaces. Antigens are substances used by the immune system to recognize
self versus non-self; if the immune system encounters antigens not normally found
on the body’s own cells, it will attack the foreign cells. When patients receive blood
transfusions, it is critical that the antigens of transfused cells match those of the
patient’s, or else an immune system response will be triggered.

The ABO blood group system consists of four different blood groups, which describe
whether an individual’s red blood cells carry the A antigen, B antigen, both, or nei-
ther. The ABO gene has three alleles: IA, IB, and i. The i allele is recessive to both
IA and IB, and does not produce antigens; thus, an individual with genotype IAi is
blood group A and an individual with genotype IBi is blood group B. The IA and
IB alleles are codominant, such that individuals of IAIB genotype are AB. Individ-
uals homozygous for the i allele are known as blood group O, with neither A nor B
antigens.

Suppose that both members of a couple have Group AB blood.

a) What is the probability that a child of this couple will have Group A blood?

b) What is the probability that they have two children with Group A blood?

a) An individual with Group AB blood is genotype IAIB. Two IAIB parents can pro-
duce children with genotypes IAIB, IAIA, or IBIB. Of these possibilities, only
children with genotype IAIA have Group A blood. Each parent has 0.5 proba-
bility of passing down their IA allele. Thus, the probability that a child of this
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couple will have Group A blood is P(parent 1 passes down IA allele) × P(parent
2 passes down IA allele) = 0.5× 0.5 = 0.25.

b) Inheritance of alleles is independent between children. Thus, the probability
of two children having Group A blood equals P(child 1 has Group A blood) ×
P(child 2 has group A blood). The probability of a child of this couple having
Group A blood was previously calculated as 0.25. The answer is given by 0.25×
0.25 = 0.0625.

The previous examples in this section have used independence to solve probability
problems. The definition of independence can also be used to check whether two events
are independent – two events A and B are independent if they satisfy Equation (2.29).

 Example 2.33 Is the event of drawing a heart from a deck of cards independent of
drawing an ace?

The probability the card is a heart is 1/4 (13/52 = 1/4) and the probability that it is
an ace is 1/13 (4/52 = 1/13). The probability that the card is the ace of hearts (A♥) is
1/52. Check whether Equation 2.29 is satisfied:

P (♥)P (A) =
(1

4

)( 1
13

)
=

1
52

= P (♥ and A)

Since the equation holds, the event that the card is a heart and the event that the
card is an ace are independent events.

 Example 2.34 In the general population, about 15% of adults between 25 and 40
years of age are hypertensive. Suppose that among males of this age, hypertension
occurs about 18% of the time. Is hypertension independent of sex?

Assume that the population is 50% male, 50% female; it is given in the problem that
hypertension occurs about 15% of the time in adults between ages 25 and 40.

P (hypertension)× P (male) = (0.15)(0.50) = 0.075 , 0.18

Equation 2.29 is not satisfied, therefore hypertension is not independent of sex. In
other words, knowing whether an individual is male or female is informative as to
whether they are hypertensive. If hypertension and sex were independent, then we
would expect hypertension to occur at an equal rate in males as in females.
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2.2 Conditional probability

While it is difficult to obtain precise estimates, the US CDC estimated that in 2012, ap-
proximately 29.1 million Americans had type 2 diabetes – about 9.3% of the population.23

A health care practitioner seeing a new patient would expect a 9.3% chance that the pa-
tient might have diabetes.

However, this is only the case if nothing is known about the patient. The prevalence
of type 2 diabetes varies with age. Between the ages of 20 and 44, only about 4% of the
population have diabetes, but almost 27% of people age 65 and older have the disease.
Knowing the age of a patient provides information about the chance of diabetes; age and
diabetes status are not independent. While the probability of diabetes in a randomly
chosen member of the population is 0.093, the conditional probability of diabetes in a
person known to be 65 or older is 0.27.

Conditional probability is used to characterize how the probability of an outcome
varies with the knowledge of another factor or condition, and is closely related to the
concepts of marginal and joint probabilities.

2.2.1 Marginal and joint probabilities

Tables 2.14 and 2.15 provide additional information about the relationship between dia-
betes prevalence and age.24 Table 2.14 is a contingency table for the entire US population
in 2012; the values in the table are in thousands (to make the table more readable).

Diabetes No Diabetes Sum
Less than 20 years 200 86,664 86,864

20 to 44 years 4,300 98,724 103,024
45 to 64 years 13,400 68,526 81,926

Greater than 64 years 11,200 30,306 41,506
Sum 29,100 284,220 313,320

Table 2.14: Contingency table showing type 2 diabetes status and age
group, in thousands

In the first row, for instance, Table 2.14 shows that in the entire population of approx-
imately 313,320,000 people, approximately 200,000 individuals were in the less than 20
years age group and diagnosed with diabetes – about 0.1%. The table also indicates that
among the approximately 86,864,000 individuals less than 20 years of age, only 200,000
suffered from type 2 diabetes, approximately 0.2%. The distinction between these two
statements is small but important. The first provides information about the size of the
group with type 2 diabetes population that is less than 20 years of age, relative to the
entire population. In contrast, the second statement is about the size of the diabetes pop-
ulation within the less than 20 years of age group, relative to the size of that age group.⊙

Guided Practice 2.35

2321 million of these cases are diagnosed, while the CDC predicts that 8.1 million cases are undiagnosed;
that is, approximately 8.1 million people are living with diabetes, but they (and their physicians) are unaware
that they have the condition.

24Because the CDC provides only approximate numbers for diabetes prevalence, the numbers in the table are
approximations of actual population counts.
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What fraction of the US population are 45 to 64 years of age and have diabetes?
What fraction of the population age 45 to 64 have diabetes?25

The entries in Table 2.15 show the proportions of the population in each of the eight
categories defined by diabetes status and age, obtained by dividing each value in the cells
of Table 2.14 by the total population size.

Diabetes No Diabetes Sum
Less than 20 years 0.001 0.277 0.277

20 to 44 years 0.014 0.315 0.329
45 to 64 years 0.043 0.219 0.261

Greater than 64 years 0.036 0.097 0.132
Sum 0.093 0.907 1.000

Table 2.15: Probability table summarizing diabetes status and age group

If these proportions are interpreted as probabilities for randomly chosen individuals
from the population, the value 0.014 in the first column of the second row implies that the
probability of selecting someone at random who has diabetes and whose age is between 20
and 44 is 0.014, or 1.4%. The entries in the eight main table cells (i.e., excluding the values
in the margins) are joint probabilities, which specify the probability of two events hap-
pening at the same time – in this case, diabetes and a particular age group. In probability
notation, this joint probability can be expressed as 0.014 = P (diabetes and age 20 to 44).26

The values in the last row and column of the table are the sums of the corresponding
rows or columns. The sum of the of the probabilities of the disjoint events (diabetes, age 20
to 44) and (no diabetes, age 20 to 44), 0.329, is the probability of being in the age group 20
to 44. The row and column sums are marginal probabilities; they are probabilities about
only one type of event, such as age. For example, the sum of the first column (0.093) is the
marginal probability of a member of the population having diabetes.

Marginal and joint probabilities

A marginal probability is a probability only related to a single event or process,
such as P (A). A joint probability is the probability that two or more events or
processes occur jointly, such as P (A and B).

⊙
Guided Practice 2.36 What is the interpretation of the value 0.907 in the last row
of the table? And of the value 0.097 directly above it?27

2.2.2 Defining conditional probability

The probability that a randomly selected individual from the US has diabetes is 0.093, the
sum of the first column in Table 2.15. How does that probability change if it is known

25The first value is given by the intersection of "45 - 64 years of age" and "diabetes", divided by the total
population number: 13,400,000/313,320,000 = 0.043. The second value is given by dividing 13,400,000 by
81,926,000, the number of individuals in that age group: 13,400,000/81,926,000 = 0.164.

26Alternatively, this is commonly written as as P (diabetes, age 20 to 44), with a comma replacing “and”.
27The value 0.907 in the last row indicates the total proportion of individuals in the population who do not

have diabetes. The value 0.097 indicates the joint probability of not having diabetes and being in the greater
than 64 years age group.
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that the individual’s age is 64 or greater?
The conditional probability can be calculated from Table 2.14, which shows that

11,200,000 of the 41,506,000 people in that age group have diabetes, so the likelihood
that someone from that age group has diabetes is:

11,200,000
41,506,000

= 0.27,

or 27%. The additional information about a patient’s age allows for a more accurate esti-
mate of the probability of diabetes.

Similarly, the conditional probability can be calculated from the joint and marginal
proportions in Table 2.15. Consider the main difference between the conditional proba-
bility versus the joint and marginal probabilities. Both the joint probability and marginal
probabilities are probabilities relative to the entire population. However, the conditional
probability is the probability of having diabetes, relative only to the segment of the popu-
lation greater than the age of 64.

Intuitively, the denominator in the calculation of a conditional probability must ac-
count for the fact that only a segment of the population is being considered, rather than
the entire population. The conditional probability of diabetes given age 64 or older is sim-
ply the joint probability of having diabetes and being greater than 64 years of age divided
by the marginal probability of being in that age group:

prop. of population with diabetes, age 64 or greater
prop. of population greater than age 64

=
11,200,000/313,320,000
41,506,000/313,320,000

=
0.036
0.132

= 0.270.

This leads to the mathematical definition of conditional probability.

Conditional probability

The conditional probability of an event A given an event or condition B is:

P (A|B) =
P (A and B)

P (B)
(2.37)

⊙
Guided Practice 2.38 Calculate the probability that a randomly selected person
has diabetes, given that their age is between 45 and 64.28

⊙
Guided Practice 2.39 Calculate the probability that a randomly selected person is
between 45 and 64 years old, given that the person has diabetes." 29

28Let A be the event a person has diabetes, and B the event that their age is between 45 and 64. Use the

information in Table 2.15 to calculate P (A|B). P (A|B) = P (A and B)
P (B) = 0.043

0.261 = 0.165.
29Again, let A be the event a person has diabetes, and B the event that their age is between 45 and 64. Find

P (B|A). P (B|A) = P (A and B)
P (A) = 0.043

0.093 = 0.462.
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Conditional probabilities have similar properties to regular (unconditional) proba-
bilities.

Sum of conditional probabilities

Let A1, ..., Ak represent all the disjoint outcomes for a variable or process. Then
if B is an event, possibly for another variable or process, we have:

P (A1|B) + · · ·+ P (Ak |B) = 1

The rule for complements also holds when an event and its complement are con-
ditioned on the same information:

P (A|B) = 1− P (Ac |B)

⊙
Guided Practice 2.40 Calculate the probability a randomly selected person is
older than 20 years of age, given that the person has diabetes.30

2.2.3 General multiplication rule

Section 2.1.7 introduced the Multiplication Rule for independent processes. Here, the
General Multiplication Rule is introduced for events that might not be independent.

General Multiplication Rule

If A and B represent two outcomes or events, then

P (A and B) = P (A|B)P (B)

It is useful to think of A as the outcome of interest and B as the condition.

This General Multiplication Rule is simply a rearrangement of the definition for con-
ditional probability in Equation (2.37) on page 98.

 Example 2.41 Suppose that among male adults between 25 and 40 years of age, hy-
pertension occurs about 18% of the time. Assume that the population is 50% male,
50% female. What is the probability of randomly selecting a male with hypertension
from the population of individuals 25-40 years of age?

Let A be the event that a person has hypertension, and B the event that they are a
male adult between 25 and 40 years of age. P (A|B), the probability of hypertension
given male sex, is 0.18. Thus, P (A and B) = (0.18)(0.50) = 0.09.

2.2.4 Independence and conditional probability

If two events are independent, knowing the outcome of one should provide no informa-
tion about the other.

30Let A be the event that a person has diabetes, and B be the event that their age is less than 20 years. The
desired probability is P (Bc |A) = 1− P (B|A) = 1− 0.001

0.093 = 0.989.
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 Example 2.42 Let X and Y represent the outcomes of rolling two dice. Use the
formula for conditional probability to compute P (Y = 1 | X = 1). What is P (Y = 1)?
Is this different from P (Y = 1 | X = 1)?

P (Y = 1 and X = 1)
P (X = 1)

=
1/36
1/6

= 1/6

The probability P (Y = 1) = 1/6 is the same as the conditional probability. The prob-
ability that Y = 1 was unchanged by knowledge about X, since the events X and Y
are independent.

Using the Multiplication Rule for independent events allows for a mathematical il-
lustration of why the condition information has no influence in Example 2.42:

P (Y = 1 | X = 1) =
P (Y = 1 and X = 1)

P (X = 1)

=
P (Y = 1)P (X = 1)

P (X = 1)
= P (Y = 1)

This is a specific instance of the more general result that if two events A and B are
independent, P (A|B) = P (A) as long as P (B) > 0:

P (A|B) =
P (A and B)

P (B)

=
P (A)P (B)
P (B)

= P (A)⊙
Guided Practice 2.43 In the US population, about 45% of people are blood group
O. Suppose that 40% of Asian people living in the US are blood group O, and that the
Asian population in the United States is approximately 4%. Do these data suggest
that blood group is independent of ethnicity?31

2.2.5 Bayes’ Theorem

This chapter began with a straightforward question – what are the chances that a woman
with an abnormal (i.e., positive) mammogram has breast cancer? For a clinician, this ques-
tion can be rephrased as the conditional probability that a woman has breast cancer, given
that her mammogram is abnormal. This conditional probability is called the positive pre-
dictive value (PPV) of a mammogram. More concisely, ifA = {a woman has breast cancer},
and B = {a mammogram is positive}, the PPV of a mammogram is P (A|B).

The characteristics of a mammogram (and other diagnostic tests) are given with the
reverse conditional probabilities—the probability that the mammogram correctly returns

31Let A represent blood group O, and B represent Asian ethnicity. Since P (A|B) = 0.40 does not equal P (A) =
0.45, the two events are not independent. Blood group does not seem to be independent of ethnicity.
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a positive result if a woman has breast cancer, as well as the probability that the mammo-
gram correctly returns a negative result if a woman does not have breast cancer. These are
the probabilities P (B|A) and P (Bc |Ac), respectively.

Given the probabilities P (B|A) and P (Bc |Ac), as well as the marginal probability of
disease P (A), how can the positive predictive value P (A|B) be calculated?

There are several possible strategies for approaching this type of problem—1) con-
structing tree diagrams, 2) using a purely algebraic approach using Bayes’ Theorem, and
3) creating contingency tables based on calculating conditional probabilities from a large,
hypothetical population.

 Example 2.44 In Canada, about 0.35% of women over 40 will develop breast cancer
in any given year. A common screening test for cancer is the mammogram, but it
is not perfect. In about 11% of patients with breast cancer, the test gives a false
negative: it indicates a woman does not have breast cancer when she does have
breast cancer. Similarly, the test gives a false positive in 7% of patients who do not
have breast cancer: it indicates these patients have breast cancer when they actually
do not.32 If a randomly selected woman over 40 is tested for breast cancer using
a mammogram and the test is positive – that is, the test suggests the woman has
cancer – what is the probability she has breast cancer?

Solution 1. Tree Diagram.

Cancer Status Mammogram

cancer,  0.0035

positive,  0.89
0.0035*0.89 = 0.00312

negative,  0.11
0.0035*0.11 = 0.00038

no cancer,  0.9965

positive,  0.07
0.9965*0.07 = 0.06976

negative,  0.93
0.9965*0.93 = 0.92675

Figure 2.16: A tree diagram for breast cancer screening.

A tree diagram is a tool to organize outcomes and probabilities around the structure
of data, and is especially useful when two or more processes occur in a sequence, with
each process conditioned on its predecessors.

In Figure 2.16, the primary branches split the population by cancer status, and show
the marginal probabilities 0.0035 and 0.9965 of having cancer or not, respectively. The
secondary branches are conditioned on the primary branch and show conditional prob-
abilities; for example, the top branch is the probability that a mammogram is positive
given that an individual has cancer. The problem provides enough information to com-
pute the probability of testing positive if breast cancer is present, since this probability is
the complement of the probability of a false negative: 1− 0.11 = 0.89.

32The probabilities reported here were obtained using studies reported at www.breastcancer.org and
www.ncbi.nlm.nih.gov/pmc/articles/PMC1173421.

http://www.openintro.org/redirect.php?go=textbook-breastCancerDotOrg_20090831b&referrer=os3_pdf
http://www.openintro.org/redirect.php?go=textbook-ncbi_nih_breast_cancer&referrer=os3_pdf
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Joint probabilities can be constructed at the end of each branch by multiplying the
numbers from right to left, such as the probability that a woman tests positive given that
she has breast cancer (abbreviated as BC):

P (BC and mammogram+) = P (mammogram+ | BC)× P (BC)

= (0.89)(0.0035) = 0.00312

Using the tree diagram allows for the information in the problem to be mapped out in
a way that makes it easier to calculate the desired conditional probability. In this case, the
diagram makes it clear that there are two scenarios in which someone can test positive:
either testing positive when having breast cancer or by testing positive in the absence
of breast cancer. To find the probability that a woman has breast cancer given that she
tests positive, apply the conditional probability formula: divide the probability of testing
positive when having breast cancer by the probability of testing positive.

The probability of a positive test result is the sum of the two corresponding scenarios:

P (mammogram+) =P (mammogram+ and has BC) + P (mammogram+ and no BC)

=[P (mammogram+ | has BC)× P (has BC)] + [P (mammogram+ | no BC)× P (no BC)]

=(0.0035)(0.89) + (0.9965)(0.07) = 0.07288

Thus, if the mammogram screening is positive for a patient, the probability that the
patient has breast cancer is given by:

P (has BC |mammogram+) =
P (has BC and mammogram+)

P (mammogram+)

=
0.00312
0.07288

≈ 0.0428

Even with a positive mammogram, there is still only a 4% chance of breast cancer! It
may seem surprising that even when the false negative and false positive probabilities of
the test are small (0.11 and 0.07, respectively), the conditional probability of disease given
a positive test could also be so small. In this population, the probability that a woman
does not have breast cancer is high (1 - 0.0035 = 0.9965), which results in a relatively high
number of false positives in comparison to true positives.

Calculating probabilities for diagnostic tests is done so often in medicine that the
topic has some specialized terminology. The sensitivity of a test is the probability of
a positive test result when disease is present, such as a positive mammogram when a
patient has breast cancer. The specificity of a test is the probability of a negative test
result when disease is absent.33 The probability of disease in a population is referred
to as the prevalence. With specificity and sensitivity information for a particular test,
along with disease prevalence, the positive predictive value (PPV) can be calculated: the
probability that disease is present when a test result is positive. Similarly, the negative
predictive value is the probability that disease is absent when test results are negative.
These terms are used for nearly all diagnostic tests used to screen for diseases.⊙

Guided Practice 2.45 Identify the prevalence, sensitivity, specificity, and PPV
from the scenario in Example 2.44.34

33The specificity and sensitivity are, respectively, the probability of a true positive test result and the proba-
bility of a true negative test result.

34The prevalence of breast cancer is 0.0035. The sensitivity is the probability of a positive test result when
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Solution 2. Bayes’ Rule.

The process used to solve the problem via the tree diagram can be condensed into a single
algebraic expression by substituting the original probability expressions into the numer-
ator and denominator:

P (has BC |mammogram+) =
P (has BC and mammogram+)

P (mammogram+)

=
P (mammogram+ | has BC)× P (has BC)

[P (mammogram+ | has BC)× P (has BC)] + [P (mammogram+ | no BC)× P (no BC)]

The expression can also be written in terms of diagnostic testing language, whereD =
{has disease},Dc = {does not have disease}, T + = {positive test result}, and T − = {negative test result}.

P (D |T +) =
P (D and T +)

P (T +)

=
P (T +|D)× P (D)

[P (T +|D)× P (D)] + [P (T +|Dc)× P (Dc)]

PPV =
sensitivity × prevalence

[sensitivity × prevalence] + [(1 - specificity) × (1 - prevalence)]

The generalization of this formula is known as Bayes’ Theorem or Bayes’ Rule.

Bayes’ Theorem

Consider the following conditional probability for variable 1 and variable 2:

P (outcome A1 of variable 1 | outcome B of variable 2)

Bayes’ Theorem states that this conditional probability can be identified as the
following fraction:

P (B|A1)P (A1)
P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|Ak)P (Ak)

(2.46)

whereA2,A3, ..., andAk represent all other possible outcomes of the first variable.

The numerator identifies the probability of getting both A1 and B. The denominator
is the marginal probability of getting B. This bottom component of the fraction describes
the adding of probabilities from the different ways to get B.

To apply Bayes’ Theorem correctly, there are two preparatory steps:

(1) First identify the marginal probabilities of each possible outcome of the first vari-
able: P (A1), P (A2), ..., P (Ak).

(2) Then identify the probability of the outcome B, conditioned on each possible sce-
nario for the first variable: P (B|A1), P (B|A2), ..., P (B|Ak).

Once these probabilities are identified, they can be applied directly within the formula.

disease is present, which is the complement of a false negative: 1− 0.11 = 0.89. The specificity is the probability
of a negative test result when disease is absent, which is the complement of a false positive: 1− 0.07 = 0.93. The
PPV is 0.04, the probability of breast cancer given a positive mammogram.
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Solution 3. Contingency Table.

The positive predictive value (PPV) of a diagnostic test can be calculated by constructing
a two-way contingency table for a large, hypothetical population and calculating condi-
tional probabilities by conditioning on rows or columns. Using a large enough hypotheti-
cal population results in an empirical estimate of PPV that is very close to the exact value
obtained via using the previously discussed approaches.

Begin by constructing an empty 2 × 2 table, with the possible outcomes of the di-
agnostic test as the rows, and the possible disease statuses as the columns (Table 2.17).
Include cells for the row and column sums.

Choose a large number N , for the hypothetical population size. Typically, N of
100,000 is sufficient for an accurate estimate.

Breast Cancer Present Breast Cancer Absent Sum
Mammogram Positive – – –

Mammogram Negative – – –
Sum – – 100,000

Table 2.17: A 2× 2 table for the mammogram example, with hypothetical
population size N of 100,000.

Continue populating the table, using the provided information about the prevalence
of breast cancer in this population (0.35%), the chance of a false negative mammogram
(11%), and the chance of a false positive (7%):

1. Calculate the two column totals (the number of women with and without breast
cancer) from P (BC), the disease prevalence:

N × P (BC) = 100,000× .0035 = 350 women with BC

N × [1− P (BC)] = 100,000× [1− .0035] = 99,650 women without BC

Alternatively, the number of women without breast cancer can be calculated by sub-
tracting the number of women with breast cancer from N .

2. Calculate the two numbers in the first column: the number of women who have
breast cancer and tested either negative (false negative) or positive (true positive).

women with BC× P (false "-") = 350× .11 = 38.5 false "-" results

women with BC× [1− P (true "+")] = 350× [1− .11] = 311.5 true "+" results

3. Calculate the two numbers in the second column: the number of women who do
not have breast cancer and tested either positive (false positive) or negative (true
negative).

women without BC× P (false "+") = 99,650× .07 = 6,975.5 false "+" results

women without BC× [1− P (true "-")] = 99,650× [1− .07] = 92,674.5 true "-" results

4. Complete the table by calculating the two row totals: the number of positive and
negative mammograms out of 100,000.

(true "+" results) + (false "+" results) = 311.5 + 6,975.5 = 7,287 "+" mammograms

(true "-" results) + (false "-" results) = 38.5 + 92,674.5 = 92,713 "-" mammograms
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5. Finally, calculate the PPV of the mammogram by using the ratio of the number of
true positives to the total number of positive mammograms. This estimate is more
than accurate enough, with the calculated value differing only in the third decimal
place from the exact calculation,

true "+" results
"+" mammograms

=
311.5
7,287

= 0.0427

Breast Cancer Present Breast Cancer Absent Sum
Mammogram Positive 311.5 6,975.5 7,287

Mammogram Negative 38.5 92,674.5 92,713
Sum 350 99,650 100,000

Table 2.18: Completed table for the mammogram example. The table
shows again why the PPV of the mammogram is low: almost 7,300 women
will have a positive mammogram result in this hypothetical population,
but only ~312 of those women actually have breast cancer.

⊙
Guided Practice 2.47 Some congenital disorders are caused by errors that occur
during cell division, resulting in the presence of additional chromosome copies. Tri-
somy 21 occurs in approximately 1 out of 800 births. Cell-free fetal DNA (cfDNA)
testing is one commonly used way to screen fetuses for trisomy 21. The test sensi-
tivity is 0.98 and the specificity is 0.995. Calculate the PPV and NPV of the test.35

35PPV =
P (T +|D)× P (D)

[P (T +|D)× P (D)] + [P (T +|Dc)× P (Dc)]
=

(0.98)(1/800)
(0.98)(1/800) + (1− 0.995)(799/800)

= 0.197

NPV =
P (T −|Dc)× P (Dc)

[P (T −|D)× P (D)] + [P (T −|Dc)× P (Dc)]
=

(0.995)(799/800)
(1− 0.98)(1/800) + (0.995)(799/800)

= 0.999975
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2.3 Extended example: cat genetics

So far, the principles of probability have only been illustrated with short examples. In
a more complex setting, it can be surprisingly difficult to accurately translate a problem
scenario into the language of probability. This section demonstrates how the rules of prob-
ability can be applied to work through a relatively sophisticated conditioning problem.

Problem statement

The gene that controls white coat color in cats, KIT , is known to be responsible for multi-
ple phenotypes such as deafness and blue eye color. A dominant allele W at one location
in the gene has complete penetrance for white coat color; all cats with the W allele have
white coats. There is incomplete penetrance for blue eyes and deafness; not all white cats
will have blue eyes and not all white cats will be deaf. However, deafness and blue eye
color are strongly linked, such that white cats with blue eyes are much more likely to be
deaf. The variation in penetrance for eye color and deafness may be due to other genes as
well as environmental factors.

Suppose that 30% of white cats have one blue eye, while 10% of white cats have two
blue eyes. About 73% of white cats with two blue eyes are deaf and 40% of white cats
with one blue eye are deaf. Only 19% of white cats with other eye colors are deaf.

a) Calculate the prevalence of deafness among white cats.

b) Given that a white cat is deaf, what is the probability that it has two blue eyes?

c) Suppose that deaf, white cats have an increased chance of being blind, but that the
prevalence of blindness differs according to eye color. While deaf, white cats with two
blue eyes or two non-blue eyes have probability 0.20 of developing blindness, deaf and
white cats with one blue eye have probability 0.40 of developing blindness. White cats
that are not deaf have probability 0.10 of developing blindness, regardless of their eye
color.

i. What is the prevalence of blindness among deaf, white cats?

ii. What is the prevalence of blindness among white cats?

iii. Given that a cat is white and blind, what is the probability that it has two blue
eyes?

Defining notation

Before beginning any calculations, it is essential to clearly define any notation that will be
used. For this problem, there are several events of interest: deafness, number of blue eyes
(either 0, 1, or 2), and blindness.

– Let D represent the event that a white cat is deaf.

– Let B0 = {zero blue eyes}, B1 = {one blue eye}, and B2 = {two blue eyes}.

– Let L represent the event that a white cat is blind.

Note that since all cats mentioned in the problem are white, it is not necessary to
define whiteness as an event; white cats represent the sample space.
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Part a) Deafness

The prevalence of deafness among white cats is the proportion of white cats that are deaf;
i.e., the probability of deafness among white cats. In the notation of probability, this
question asks for the value of P (D).

 Example 2.48 The following information has been given in the problem. Re-write
the information using the notation defined earlier.

Suppose that 30% of white cats have one blue eye, while 10% of white cats
have two blue eyes. About 73% of white cats with two blue eyes are deaf
and 40% of white cats with one blue eye are deaf. Only 19% of white cats
with other eye colors are deaf.

The first sentence provides information about the prevalence of white cats with one
blue eye and white cats with two blue eyes: P (B1) = 0.30 and P (B2) = 0.10. The only
other possible eye color combination is zero blue eyes (i.e., two non-blue eyes); i.e.,
since P (B0) + P (B1) + P (B2) = 1, P (B0) = 1 − P (B1) − P (B2) = 0.60. 60% of white cats
have two non-blue eyes.

While it is not difficult to recognize that the second and third sentences provide in-
formation about deafness in relation to eye color, it can be easy to miss that these
probabilities are conditional probabilities. A close reading should focus on the lan-
guage—"About 73% of white cats with two blue eyes are deaf...": i.e., out of the white
cats that have two blue eyes, 73% are deaf. Thus, these are probabilities of deafness
conditioned on eye color. From these sentences, P (D |B2) = 0.73, P (D |B1) = 0.40, and
P (D |B0) = 0.19.

Consider that there are three possible ways to partition the event D, that a white cat
is deaf: a cat could be deaf and have two blue eyes, be deaf and have one blue eye (and
one non-blue eyes), or be deaf and have two non-blue eyes. Thus, by the addition rule of
disjoint outcomes:

P (D) = P (D and B2) + P (D and B1) + P (D and B0)

Although the joint probabilities of being deaf and having particular eye colors are
not given in the problem, these can be solved for based on the given information. The
definition of conditional probability P (A|B) relates the joint probability P (A and B) with
the marginal probability P (B).36

P (A|B) =
P (A and B)

P (B)
P (A and B) = P (A|B)P (B)

Thus, the probability P (D) is given by:

P (D) =P (D and B2) + P (D and B1) + P (D and B0)

=P (D |B2)P (B2) + P (D |B1)P (B1) + P (D |B0)P (B0)

=(0.73)(0.10) + (0.40)(0.30) + (0.19)(0.60)

=0.307

The prevalence of deafness among white cats is 0.307.

36This rearrangement of the definition of conditional probability, P (A and B) = P (A|B)P (B), is also known as
the general multiplication rule.
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Part b) Deafness and eye color

The probability that a white cat has two blue eyes, given that it is deaf, can be expressed
as P (B2|D).

 Example 2.49 Using the definition of conditional probability, solve for P (B2|D).

P (B2|D) =
P (D and B2)

P (D)
=
P (D |B2)P (B2)

P (D)
=

(0.73)(0.10)
0.307

= 0.238

The probability that a white cat has two blue eyes, given that it is deaf, is 0.238.

It is also possible to think of this as a Bayes’ Rule problem, where there are three
possible partitions of the event of deafness, D. In this problem, it is possible to directly
solve from the definition of conditional probability since P (D) was solved for in part a);
note that the expanded denominator below matches the earlier work to calculate P (D).

P (B2|D) =
P (D and B2)

P (D)
=

P (D |B2)P (B2)
P (D |B2)P (B2) + P (D |B1)P (B1) + P (D |B0)P (B0)

Part c) Blindness, deafness, and eye color

 Example 2.50 The following information has been given in the problem. Re-write
the information using the notation defined earlier.

Suppose that deaf, white cats have an increased chance of being blind,
but that the prevalence of blindness differs according to eye color. While
deaf, white cats with two blue eyes or two non-blue eyes have probability
0.20 of developing blindness, deaf and white cats with one blue eye have
probability 0.40 of developing blindness. White cats that are not deaf have
probability 0.10 of developing blindness, regardless of their eye color.

The second sentence gives probabilities of blindness, conditional on eye color and
being deaf: P (L|B2,D) = P (L|B0,D) = 0.20, and P (L|B1,D) = 0.40. The third sentence
gives the probability that a white cat is blind, given that it is not deaf: P (L|DC) =
0.10.

Part i. asks for the prevalence of blindness among deaf, white cats: P (L|D). As in part
a), the event of blindness given deafness can be partitioned by eye color:

P (L|D) = P (L and B0|D) + P (L and B1|D) + P (L and |D)

 Example 2.51 Expand the previous expression using the general multiplication
rule, P (A and B) = P (A|B)P (B).

The general multiplication rule may seem difficult to apply when conditioning is
present, but the principle remains the same. Think of the conditioning as a way to
restrict the sample space; in this context, conditioning on deafness implies that for
this part of the problem, all the cats being considered are deaf (and white).

For instance, consider the first term, P (L and B0|D), the probability of being blind
and having two non-blue eyes, given deafness. How could this be rewritten if the
probability were simply P (L and B0)?

P (L and B0) = P (L|B0)P (B0)
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Now, recall that for this part of the problem, the sample space is restricted to deaf
(and white) cats. Thus, all of the terms in the expansion should include conditioning
on deafness:

P (L and B0|D) = P (L|D,B0)P (B0|D)

Thus,

P (L|D) = P (L|D,B0)P (B0|D) + P (L|D,B1)P (B1|D) + P (L|D,B2)P (B2|D)

Although P (L|D,B0), P (L|D,B1), and P (L|D,B2) are given from the problem statement,
P (B0|D, P (B1|D), and P (B2|D) are not. However, note that the probability that a white cat
has two blue eyes given that it is deaf, P (B2|D), was calculated in part b).⊙

Guided Practice 2.52 Calculate P (B0|D) and P (B1|D).37

There is now sufficient information to calculate P (L|D):

P (L|D) =P (L and B0|D) + P (L and B1|D) + P (L and |D)

=P (L|D,B0)P (B0|D) + P (L|D,B1)P (B1|D) + P (L|D,B2)P (B2|D)

=(0.20)(0.371) + (0.40)(0.391) + (0.20)(0.238)

=0.278

The prevalence of blindness among deaf, white cats is 0.278.
Part ii. asks for the prevalence of blindness among white cats, P (L). Again, parti-

tioning is an effective strategy. Instead of partitioning by eye color, however, partition by
deafness.

 Example 2.53 Calculate the prevalence of blindness among white cats, P (L).

P (L) =P (L and D) + P (L and DC)

=P (L|D)P (D) + P (L|DC)P (DC)

=(0.278)(0.307) + (0.10)(1− 0.307)

=0.155

P (D) was calculated in part a), while P (L|D) was calculated in part c, i. The condi-
tioning probability of blindness given a white cat is not deaf is 0.10, as given in the
question statement. By the definition of the complement, P (DC) = 1− P (D).

The prevalence of blindness among white cats is 0.155.

Part iii. asks for the probability that a cat has two blue eyes, given that it is white
and blind. This probability can be expressed as P (B2|L). Recall that since all cats being
discussed in the problem are white, it is not necessary to condition on coat color.

37

P (B0|D) =
P (D and B0)

P (D)
=
P (D |B0)P (B0)

P (D)
=

(0.19)(0.60)
0.307

= 0.371

P (B1|D) =
P (D and B1)

P (D)
=
P (D |B1)P (B1)

P (D)
=

(0.40)(0.30)
0.307

= 0.391
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Start out with the definition of conditional probability:

P (B2|L) =
P (B2 and L)

P (L)

The key to calculating P (B2|L) relies on recognizing that the event a cat is blind and
has two blue eyes can be partitioned by whether or not the cat is also deaf:

P (B2|L) =
P (B2 and L and D) + P (B2 and L and DC)

P (L)
(2.54)

 Example 2.55 Draw a tree diagram to organize the events involved in this problem.
Identify the branches that represent the possible paths for a white cat to both have
two blue eyes and be blind.

When drawing a tree diagram, remember that each branch is conditioned on the
previous branches. While there are various possible trees, the goal is to construct a
tree for which as many of the branches as possible have known probabilities.

The tree for this problem will have three branch points, corresponding to either
deafness, blindness, or eye color. The first set of branches contain unconditional
probabilities, the second set contains conditional probabilities given one event, and
the third set contains conditional probabilities given two events.

Recall that the probabilities P (L|D,B0), P (L|D,B1), and P (L|D,B2) were provided in
the problem statement. These are the only probabilities conditioned on two events
that have previously appeared in the problem, so blindness is the most convenient
choice of third branch point.

It is not immediately obvious whether it will be more efficient to start with deafness
or eye color, since unconditional and conditional probabilities related to both have
appeared in the problem. Figure 2.19 shows two trees, one starting with deafness
and the other starting with eye color. The two possible paths for a white cat to both
have two blue eyes and be blind are shown in green.

 Example 2.56 Expand Equation 2.54 according to the tree shown in Figure 2.19(a),
and solve for P (B2|L).

P (B2|L) =
P (B2 and L and D) + P (B2 and L and DC)

P (L)

=
P (L|B2,D)P (B2|D)P (D) + P (L|B2,D

C)P (B2|DC)P (DC)
P (L)

=
(0.20)(0.238)(0.307) + (0.10)P (B2|DC)P (DC)

0.155

Two of the probabilities have not been calculated previously: P (B2|DC) and P (DC).
From the definition of the complement, P (DC) = 1 − P (D) = 0.693; P (D) was calcu-
lated in part a). To calculate P (B2|DC), apply the definition of conditional probabil-
ity as in part b), where P (B2|D) was calculated:

P (B2|DC) =
P (DC and B2)

P (DC)
=
P (DC |B2)(P (B2)

P (DC)
=

(1− 0.73)(0.10)
0.693

= 0.0390.
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(a) (b)

Figure 2.19: In (a), the first branch is based on deafness, while in (b), the
first branch is based on eye color.

P (B2|L) =
(0.20)(0.238)(0.307) + (0.10)(0.0390)(0.693)

0.155
= 0.112

The probability that a white cat has two blue eyes, given that it is blind, is 0.112.⊙
Guided Practice 2.57 Expand Equation 2.54 according to the tree shown in Fig-
ure 2.19(b), and solve for P (B2|L).38

A tree diagram is useful for visualizing the different possible ways that a certain set
of outcomes can occur. Although conditional probabilities can certainly be calculated
without the help of tree diagrams, it is often easy to make errors with a strictly algebraic
approach. Once a tree is constructed, it can be used to solve for several probabilities of
interest. The following example shows how one of the previous trees can be applied to
answer a different question than the one posed in part c), iii.

 Example 2.58 What is the probability that a white cat has one blue eye and one
non-blue eye, given that it is not blind?

Calculate P (B1|LC). Start with the definition of conditional probability, then expand.

38

P (B2|L) =
P (L|B2,D)P (D |B2)P (B2) + P (L|B2,D

C )P (DC |B2)P (B2)
P (L)

=
(0.20)(0.73)(0.10) + (0.10)(1− 0.73)(0.10)

0.155
= 0.112
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P (B1|LC) =
P (B1 and LC)

P (LC)
=
P (B1 and LC and D) + P (B1 and LC and DC)

P (LC)

Figure 2.20 is a reproduction of the earlier tree diagram (Figure 2.19(b)), with yellow
arrows showing the two paths of interest.

Figure 2.20: The two possible paths for a white cat to both have one blue
eye (and one non-blue eye) and to not be blind are shown in yellow.

As before, expand the numerator and fill in the known values.

P (B1|LC) =
P (B1 and LC and D) + P (B1 and LC and DC)

P (LC)

=
P (LC |D,B1)P (D |B1)P (B1) + P (LC |DC ,B1)P (DC |B1)P (B1)

P (LC)

=
P (LC |D,B1)(0.40)(0.30) + P (LC |DC ,B1)P (DC |B1)(0.30)

P (LC)

The probabilities in red are not known. Apply the definition of the complement;
recall that the rule for complements holds when an event and its complement are
conditioned on the same information: P (A|B) = 1− P (AC |B).

– P (LC) = 1− P (L) = 1− 0.155 = 0.845

– P (DC |B1) = 1− P (D |B1) = 1− 0.40 = 0.60

– P (LC |D,B1) = 1− P (L|D,B1) = 1− 0.40 = 0.60

The definition of the complement can also be applied to calculate P (LC |DC ,B1).
The problem statement originally specified that white cats that are not deaf have
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probability 0.10 of developing blindness regardless of eye color: P (L|DC) = 0.10.
Thus, P (LC |DC ,B1) = P (LC |DC). By the definition of the complement, P (LC |DC) =
1− P (L|DC) = 1− 0.10 = 0.90.

P (B1|LC) =
P (B1 and LC and D) + P (B1 and LC and DC)

P (LC)

=
P (LC |D,B1)P (D |B1)P (B1) + P (LC |DC ,B1)P (DC |B1)P (B1)

P (LC)

=
(0.60)(0.40)(0.30) + (0.90)(0.60)(0.30)

0.845
=0.277

The probability that a white cat has one blue eye and one non-blue eye, given that it
is not blind, is 0.277.
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2.4 Notes

Probability is a powerful framework for quantifying uncertainty and randomness. In par-
ticular, conditional probability represents a way to update the uncertainty associated with
an event given that specific information has been observed. For example, the probability
that a person has a particular disease can be adjusted based on observed information, such
as age, sex, or the results of a diagnostic test.

As discussed in the text, there are several possible approaches to solving conditional
probability problems, including the use of tree diagrams or contingency tables. It can
also be intuitive to use a simulation approach in computing software; refer to the labs
for details about this method. Regardless of the specific approach that will be used for
calculation, it is always advisable to start any problem by understanding the problem
context (i.e., the sample space, given information, probabilities of interest) and reading
the problem carefully, in order to avoid mistakes when translating between words and
probability notation. A common mistake is to confuse joint and conditional probabilities.

Probability distributions were briefly introduced in Section 2.1.5. This topic will be
discussed in greater detail in the next chapter.

Probability forms the foundation for data analysis and statistical inference, since
nearly every conclusion to a study should be accompanied by a measure of uncertainty.
For example, the publication reporting the results of the LEAP study discussed in Chap-
ter 1 included the probability that the observed results could have been due to chance
variation. This aspect of probability will be discussed in later chapters.

The four labs for Chapter 2 cover basic principles of probability, conditional prob-
ability, positive predictive value of a diagnostic test (via Bayes’ Theorem), and the calcu-
lation of probabilities conditional on several events in the context of genetic inheritance.
Probabilities can be calculated algebraically, using formulas given in this and other texts,
but can also be calculated with simple simulations, since a probability represents a pro-
portion of times an event happens when an experiment is repeated many times. Com-
puters are particularly good at keeping track of events during many replications of an
experiment. The labs for this chapter use both algebraic and simulation methods, and are
particularly useful for building programming skills with the R language.

In medicine, the positive predictive value of a diagnostic test may be one of the most
important applications of probability theory. It is certainly the most common. The posi-
tive predictive value of a test is the conditional probability of the presence of a disease or
condition, given a positive test for the condition, and is often used when counseling pa-
tients about their risk for being diagnosed with a disease in the future. The lab on positive
predictive value examines the conditional probability of a trisomy 21 genetic mutation
(Down syndrome) given that a test based on cell-free DNA suggests its presence.
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2.5 Exercises

2.5.1 Defining probability
2.1 True or false. Determine if the statements below are true or false, and explain your reasoning.

(a) Assume that a couple has an equal chance of having a boy or a girl. If a couple’s previous three
children have all been boys, then the chance that their next child is a boy is somewhat less than
50%.

(b) Drawing a face card (jack, queen, or king) and drawing a red card from a full deck of playing
cards are mutually exclusive events.

(c) Drawing a face card and drawing an ace from a full deck of playing cards are mutually exclusive
events.

2.2 Dice rolls. If you roll a pair of fair dice, what is the probability of

(a) getting a sum of 1?

(b) getting a sum of 5?

(c) getting a sum of 12?

2.3 Colorblindness. Red-green colorblindness is a commonly inherited form of colorblindness;
the gene involved is transmitted on the X chromosome in a recessive manner. If a male inherits an
affected X chromosome, he is necessarily colorblind (genotype X−Y ). However, a female can only
be colorblind if she inherits two defective copies (genotype X−X−); heterozygous females are not
colorblind. Suppose that a couple consists of a genotype X+Y male and a genotype X+X− female.

(a) What is the probability of the couple producing a colorblind male?

(b) True or false: Among the couple’s offspring, colorblindness and female sex are mutually exclu-
sive events.

2.4 Diabetes and hypertension. Diabetes and hypertension are two of the most common diseases
in Western, industrialized nations. In the United States, approximately 9% of the population have
diabetes, while about 30% of adults have high blood pressure. The two diseases frequently occur
together: an estimated 6% of the population have both diabetes and hypertension.

(a) Are having diabetes and having hypertension disjoint?

(b) Draw a Venn diagram summarizing the variables and their associated probabilities.

(c) Let A represent the event of having diabetes, and B the event of having hypertension. Calculate
P (A or B).

(d) What percent of Americans have neither hypertension nor diabetes?

(e) Is the event of someone being hypertensive independent of the event that someone has diabetes?

2.5 Poverty and language. The American Community Survey is an ongoing survey that provides
data every year to give communities the current information they need to plan investments and
services. The 2010 American Community Survey estimates that 14.6% of Americans live below the
poverty line, 20.7% speak a language other than English (foreign language) at home, and 4.2% fall
into both categories.39

(a) Are living below the poverty line and speaking a foreign language at home disjoint?

(b) Draw a Venn diagram summarizing the variables and their associated probabilities.

(c) What percent of Americans live below the poverty line and only speak English at home?

(d) What percent of Americans live below the poverty line or speak a foreign language at home?

(e) What percent of Americans live above the poverty line and only speak English at home?

39poorLang.
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(f) Is the event that someone lives below the poverty line independent of the event that the person
speaks a foreign language at home?

2.6 Educational attainment by gender. The table below shows the distribution of education level
attained by US residents by gender based on data collected during the 2010 American Community
Survey.40

Gender
Male Female

Less than 9th grade 0.07 0.13
9th to 12th grade, no diploma 0.10 0.09

Highest HS graduate (or equivalent) 0.30 0.20
education Some college, no degree 0.22 0.24
attained Associate’s degree 0.06 0.08

Bachelor’s degree 0.16 0.17
Graduate or professional degree 0.09 0.09
Total 1.00 1.00

(a) What is the probability that a randomly chosen individual is a high school graduate? Assume
that there is an equal proportion of males and females in the population.

(b) Define Event A as having a graduate or professional degree. Calculate the probability of the
complement, Ac.

(c) What is the probability that a randomly chosen man has at least a Bachelor’s degree?
(d) What is the probability that a randomly chosen woman has at least a Bachelor’s degree?
(e) What is the probability that a man and a woman getting married both have at least a Bachelor’s

degree? Note any assumptions made – are they reasonable?

2.7 School absences. Data collected at elementary schools in DeKalb County, GA suggest that
each year roughly 25% of students miss exactly one day of school, 15% miss 2 days, and 28% miss 3
or more days due to sickness.41

(a) What is the probability that a student chosen at random doesn’t miss any days of school due to
sickness this year?

(b) What is the probability that a student chosen at random misses no more than one day?
(c) What is the probability that a student chosen at random misses at least one day?
(d) If a parent has two kids at a DeKalb County elementary school, what is the probability that

neither kid will miss any school? Note any assumptions made and evaluate how reasonable
they are.

(e) If a parent has two kids at a DeKalb County elementary school, what is the probability that both
kids will miss some school, i.e. at least one day? Note any assumptions made and evaluate how
reasonable they are.

2.8 Urgent care visits. Urgent care centers are open beyond typical office hours and provide a
broader range of services than that of many primary care offices. A study conducted to collect
information about urgent care centers in the United States reported that in one week, 15.8% of
centers saw 0-149 patients, 33.7% saw 150-299 patients, 28.8% saw 300-449 patients, and 21.7%
saw 450 or more patients. Assume that the data can be treated as a probability distribution of
patient visits for any given week.

(a) What is the probability that three random urgent care centers in a county all see between 300-
449 patients in a week? Note any assumptions made. Are the assumptions reasonable?

(b) What is the probability that ten random urgent care centers throughout a state all see 450 or
more patients in a week? Note any assumptions made. Are the assumptions reasonable?

40eduSex.
41Mizan:2011.
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(c) With the information provided, is it possible to compute the probability that one urgent care
center sees between 150-299 patients in one week and 300-449 patients in the next week? Ex-
plain why or why not.

2.9 Health coverage, frequencies. The Behavioral Risk Factor Surveillance System (BRFSS) is
an annual telephone survey designed to identify risk factors in the adult population and report
emerging health trends. The following table summarizes two variables for the respondents: health
status and health coverage, which describes whether each respondent had health insurance.42

Health Status
Excellent Very good Good Fair Poor Total

Health No 459 727 854 385 99 2,524
Coverage Yes 4,198 6,245 4,821 1,634 578 17,476

Total 4,657 6,972 5,675 2,019 677 20,000

(a) If one individual is drawn at random, what is the probability that the respondent has excellent
health and doesn’t have health coverage?

(b) If one individual is drawn at random, what is the probability that the respondent has excellent
health or doesn’t have health coverage?

2.5.2 Conditional probability

2.10 ABO blood groups. The ABO blood group system consists of four different blood groups,
which describe whether an individual’s red blood cells carry the A antigen, B antigen, both, or
neither. The ABO gene has three alleles: IA, IB, and i. The i allele is recessive to both IA and IB,
while the IA and IB allels are codominant. Individuals homozygous for the i allele are known as
blood group O, with neither A nor B antigens.

Alleles inherited Blood type
IA and IA A
IA and IB AB
IA and i A
IB and IB B
IB and i B
i and i O

Blood group follows the rules of Mendelian single-gene inheritance – alleles are inherited
independently from either parent, with probability 0.5.

(a) Suppose that both members of a couple have Group AB blood. What is the probability that a
child of this couple will have Group A blood?

(b) Suppose that one member of a couple is genotype IBi and the other is IAi. What is the proba-
bility that their first child has Type O blood and the next two do not?

(c) Suppose that one member of a couple is genotype IBi and the other is IAi. Given that one child
has Type O blood and two do not, what is the probability of the first child having Type O blood?

2.11 Global warming. A 2010 Pew Research poll asked 1,306 Americans “From what you’ve read
and heard, is there solid evidence that the average temperature on earth has been getting warmer
over the past few decades, or not?". The table below shows the distribution of responses by party
and ideology, where the counts have been replaced with relative frequencies.43

42data:BRFSS2010.
43globalWarming.
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Response
Earth is Not Don’t Know/

warming warming Refuse Total
Conservative Republican 0.11 0.20 0.02 0.33

Party and Mod/Lib Republican 0.06 0.06 0.01 0.13
Ideology Mod/Cons Democrat 0.25 0.07 0.02 0.34

Liberal Democrat 0.18 0.01 0.01 0.20
Total 0.60 0.34 0.06 1.00

(a) What is the probability that a randomly chosen respondent believes the earth is warming or is
a liberal Democrat?

(b) What is the probability that a randomly chosen respondent believes the earth is warming given
that they are a liberal Democrat?

(c) What is the probability that a randomly chosen respondent believes the earth is warming given
that they are a conservative Republican?

(d) Does it appear that whether or not a respondent believes the earth is warming is independent
of their party and ideology? Explain your reasoning.

(e) What is the probability that a randomly chosen respondent is a moderate/liberal Republican
given that they does not believe that the earth is warming?

2.12 Health coverage, relative frequencies. The Behavioral Risk Factor Surveillance System (BRFSS)
is an annual telephone survey designed to identify risk factors in the adult population and report
emerging health trends. The following table displays the distribution of health status of respon-
dents to this survey (excellent, very good, good, fair, poor) conditional on whether or not they have
health insurance.

Health Status
Excellent Very good Good Fair Poor Total

Health No 0.0230 0.0364 0.0427 0.0192 0.0050 0.1262
Coverage Yes 0.2099 0.3123 0.2410 0.0817 0.0289 0.8738

Total 0.2329 0.3486 0.2838 0.1009 0.0338 1.0000

(a) Are being in excellent health and having health coverage mutually exclusive?

(b) What is the probability that a randomly chosen individual has excellent health?

(c) What is the probability that a randomly chosen individual has excellent health given that he has
health coverage?

(d) What is the probability that a randomly chosen individual has excellent health given that he
doesn’t have health coverage?

(e) Do having excellent health and having health coverage appear to be independent?

2.13 Seat belts. Seat belt use is the most effective way to save lives and reduce injuries in motor
vehicle crashes. In a 2014 survey, respondents were asked, "How often do you use seat belts when
you drive or ride in a car?". The following table shows the distribution of seat belt usage by sex.

Seat Belt Usage
Always Nearly always Sometimes Seldom Never Total

Sex
Male 146,018 19,492 7,614 3,145 4,719 180,988

Female 229,246 16,695 5,549 1,815 2,675 255,980
Total 375,264 36,187 13,163 4,960 7,394 436,968

(a) Calculate the marginal probability that a randomly chosen individual always wears seatbelts.

(b) What is the probability that a randomly chosen female always wears seatbelts?

(c) What is the conditional probability of a randomly chosen individual always wearing seatbelts,
given that they are female?
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(d) What is the conditional probability of a randomly chosen individual always wearing seatbelts,
given that they are male?

(e) Calculate the probability that an individual who never wears seatbelts is male.
(f) Does gender seem independent of seat belt usage?

2.14 Assortative mating. Assortative mating is a nonrandom mating pattern where individuals
with similar genotypes and/or phenotypes mate with one another more frequently than what would
be expected under a random mating pattern. Researchers studying this topic collected data on eye
colors of 204 Scandinavian men and their female partners. The table below summarizes the results.
For simplicity, we only include heterosexual relationships in this exercise.44

Partner (female)
Blue Brown Green Total

Blue 78 23 13 114

Self (male)
Brown 19 23 12 54
Green 11 9 16 36
Total 108 55 41 204

(a) What is the probability that a randomly chosen male respondent or his partner has blue eyes?
(b) What is the probability that a randomly chosen male respondent with blue eyes has a partner

with blue eyes?
(c) What is the probability that a randomly chosen male respondent with brown eyes has a partner

with blue eyes? What about the probability of a randomly chosen male respondent with green
eyes having a partner with blue eyes?

(d) Does it appear that the eye colors of male respondents and their partners are independent?
Explain your reasoning.

2.15 Predisposition for thrombosis. A genetic test is used to determine if people have a predis-
position for thrombosis, which is the formation of a blood clot inside a blood vessel that obstructs
the flow of blood through the circulatory system. It is believed that 3% of people actually have this
predisposition. The genetic test is 99% accurate if a person actually has the predisposition, meaning
that the probability of a positive test result when a person actually has the predisposition is 0.99.
The test is 98% accurate if a person does not have the predisposition.

(a) What is the probability that a randomly selected person who tests positive for the predisposition
by the test actually has the predisposition?

(b) What is the probability that a randomly selected person who tests negative for the predisposi-
tion by the test actually does not have the predisposition?

2.16 HIV in Swaziland. Swaziland has the highest HIV prevalence in the world: 25.9% of this
country’s population is infected with HIV.45 The ELISA test is one of the first and most accurate
tests for HIV. For those who carry HIV, the ELISA test is 99.7% accurate. For those who do not carry
HIV, the test is 92.6% accurate. Calculate the PPV and NPV of the test.

2.17 Views on evolution. A 2013 analysis conducted by the Pew Research Center found that 60%
of survey respondents agree with the statement "humans and other living things have evolved over
time" while 33% say that "humans and other living things have existed in their present form since
the beginning of time" (7% responded "don’t know"). They also found that there are differences
among partisan groups in beliefs about evolution. While roughly two-thirds of Democrats (67%)
and independents (65%) say that humans and other living things have evolved over time, 48% of
Republicans reject the idea of evolution. Suppose that 45% of respondents identified as Democrats,
40% identified as Republicans, and 15% identified as political independents. The survey was con-
ducted among a national sample of 1,983 adults.

44Laeng:2007.
45ciaFactBookHIV:2012.
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(a) Suppose that a person is randomly selected from the population and found to identify as a
Democrat. What is the probability that this person does not agree with the idea of evolution?

(b) Suppose that a political independent is randomly selected from the population. What is the
probability that this person does not agree with the idea of evolution?

(c) Suppose that a person is randomly selected from the population and found to identify as a
Republican. What is the probability that this person agrees with the idea of evolution?

(d) Suppose that a person is randomly selected from the population and found to support the idea
of evolution. What is the probability that this person identifies as a Republican?

2.18 Cystic fibrosis testing. The prevalence of cystic fibrosis in the United States is approximately
1 in 3,500 births. Various screening strategies for CF exist. One strategy uses dried blood samples to
check the levels of immunoreactive trypsogen (IRT); IRT levels are commonly elevated in newborns
with CF. The sensitivity of the IRT screen is 87% and the specificity is 99%.

(a) In a hypothetical population of 100,000, how many individuals would be expected to test pos-
itive? Of those who test positive, how many would be true positives? Calculate the PPV of
IRT.

(b) In order to account for lab error or physiological fluctuations in IRT levels, infants who tested
positive on the initial IRT screen are asked to return for another IRT screen at a later time,
usually two weeks after the first test. This is referred to as an IRT/IRT screening strategy.
Calculate the PPV of IRT/IRT.

2.19 It’s never lupus. Lupus is a medical phenomenon where antibodies that are supposed to
attack foreign cells to prevent infections instead see plasma proteins as foreign bodies, leading to
a high risk of blood clotting. It is believed that 2% of the population suffer from this disease. The
test is 98% accurate if a person actually has the disease. The test is 74% accurate if a person does
not have the disease. There is a line from the Fox television show House that is often used after a
patient tests positive for lupus: “It’s never lupus." Do you think there is truth to this statement? Use
appropriate probabilities to support your answer.

2.20 Twins. About 30% of human twins are identical, and the rest are fraternal. Identical twins
are necessarily the same sex – half are males and the other half are females. One-quarter of fraternal
twins are both male, one-quarter both female, and one-half are mixes: one male, one female. You
have just become a parent of twins and are told they are both girls. Given this information, what is
the probability that they are identical?

2.21 Mumps. Mumps is a highly contagious viral infection that most often occurs in children, but
can affect adults, particularly if they are living in shared living spaces such as college dormitories.
It is most recognizable by the swelling of salivary glands at the side of the face under the ears, but
earlier symptoms include headaches, fever, and joint pain. Suppose a college student at a university
presents to a physician with symptoms of headaches, fever, and joint pain. LetA = {headaches, fever,
and joint pain}, and suppose that the possible disease state of the patient can be partitioned into:
B1 = normal, B2 = common cold, B3 = mumps. From clinical experience, the physician estimates
P (A|Bi ): P (A|B1) = 0.001, P (A|B2) = 0.70, P (A|B3) = 0.95. The physician, aware that some students
have contracted the mumps, then estimates that for students at this university, P (B1) = 0.95, P (B2) =
0.025, and P (B3) = 0.025. Given the previous symptoms, which of the disease states is most likely?

2.22 Breast cancer and age. The strongest risk factor for breast cancer is age; as a woman gets
older, her risk of developing breast cancer increases. The following table shows the average per-
centage of American women in each age group who develop breast cancer, according to statistics
from the National Cancer Institute. For example, approximately 3.56% of women in their 60’s get
breast cancer.

A mammogram typically identifies a breast cancer about 85% of the time, and is correct 95%
of the time when a woman does not have breast cancer.
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Age Group Prevalence
30 - 40 0.0044
40 - 50 0.0147
50 - 60 0.0238
60 - 70 0.0356
70 - 80 0.0382

(a) Calculate the PPV for each age group. Describe any trend(s) you see in the PPV values as preva-
lence changes. Explain the reason for the trend(s) in language that someone who has not taken
a statistics course would understand.

(b) Suppose that two new mammogram imaging technologies have been developed which can im-
prove the PPV associated with mammograms; one improves sensitivity to 99% (but specificity
remains at 95%), while the other improves specificity to 99% (while sensitivity remains at 85%).
Which technology offers a higher increase in PPV? Explain why.

2.23 IQ testing. A psychologist conducts a study on intelligence in which participants are asked
to take an IQ test consisting of n questions, each with m choices.

(a) One thing the psychologist must be careful about when analyzing the results is accounting
for lucky guesses. Suppose that for a given question a particular participant either knows the
answer or guesses. The participant knows the correct answer with probability p, and does not
know the answer (and therefore will have to guess) with probability 1 − p. The participant
guesses completely randomly. What is the conditional probability that the participant knew the
answer to a question, given that they answered it correctly?

(b) About 1 in 1,100 people have IQs over 150. If a subject receives a score of greater than some
specified amount, they are considered by the psychologist to have an IQ over 150. But the
psychologist’s test is not perfect. Although all individuals with IQ over 150 will definitely
receive such a score, individuals with IQs less than 150 can also receive such scores about 0.1%
of the time due to lucky guessing. Given that a subject in the study is labeled as having an IQ
over 150, what is the probability that they actually have an IQ below 150?

2.24 Prostate-specific antigen. Prostate-specific antigen (PSA) is a protein produced by the cells
of the prostate gland. Blood PSA level is often elevated in men with prostate cancer, but a number of
benign (not cancerous) conditions can also cause a man’s PSA level to rise. The PSA test for prostate
cancer is a laboratory test that measures PSA levels from a blood sample. The test measures the
amount of PSA in ng/ml (nanograms per milliliter of blood).

The sensitivity and specificity of the PSA test depend on the cutoff value used to label a PSA
level as abnormally high. In the last decade, 4.0 ng/ml has been considered the upper limit of
normal, and values 4.1 and higher were used to classify a PSA test as positive. Using this value, the
sensitivity of the PSA test is 20% and the specificity is 94%.

The likelihood that a man has undetected prostate cancer depends on his age. This likelihood
is also called the prevalence of undetected cancer in the male population. The following table shows
the prevalence of undetected prostate cancer by age group.

Age Group Prevalence PPV NPV
< 50 years 0.001
50 - 60 years 0.020
61 - 70 years 0.060
71 - 80 years 0.100

(a) Calculate the missing PPV and NPV values.

(b) Describe any trends you see in the PPV and NPV values.



2.5. EXERCISES 123

(c) Explain the reason for the trends in part b), in language that someone who has not taken a
statistics course would understand.

(d) The cutoff for a positive test is somewhat controversial. Explain, in your own words, how low-
ering the cutoff for a positive test from 4.1 ng/ml to 2.5 ng/ml would affect sensitivity and
specificity.

2.5.3 Extended example
2.25 Colorblindness. The most common form of colorblindness is a recessive, sex-linked hered-
itary condition caused by a defect on the X chromosome. Females are XX, while males are XY.
Individuals inherit one chromosome from each parent, with equal probability; for example, an in-
dividual has a 50% chance of inheriting their father’s X chromosome, and a 50% chance of inheriting
their father’s Y chromosome. If a male has an X chromosome with the defect, he is colorblind. How-
ever, a female with only one defective X chromosome will not be colorblind. Thus, colorblindness
is more common in males than females; 7% of males are colorblind but only 0.5% of females are
colorblind.

(a) Assume that the X chromosome with the wild-type allele is X+ and the one with the disease
allele is X−. What is the expected frequency of each possible female genotype: X+X+, X+X−,
and X−X−? What is the expected frequency of each possible male genotype: X+Y and X−Y ?

(b) Suppose that two parents are not colorblind. What is the probability that they have a colorblind
child?

2.26 Eye color. One of the earliest models for the genetics of eye color was developed in 1907, and
proposed a single-gene inheritance model, for which brown eye color is always dominant over blue
eye color. Suppose that in the population, 25% of individuals are homozygous dominant (BB), 50%
are heterozygous (Bb), and 25% are homozygous recessive (bb).

(a) Suppose that two parents have brown eyes. What is the probability that their first child has blue
eyes?

(b) Does the probability change if it is now known that the paternal grandfather had blue eyes?
Justify your answer.

(c) Given that their first child has brown eyes, what is the probability that their second child has
blue eyes? Ignore the condition given in part (b).



Chapter 3

Distributions of random variables

When planning clinical research studies, investigators try to anticipate the results they
might see under certain hypotheses. The treatments for some forms of cancer, such as ad-
vanced lung cancer, are only effective in a small percentage of patients: typically 20% or
less. Suppose that a study testing a new treatment will be conducted on 20 participants,
where the working assumption is that 20% of the patients will respond to the treatment.
How might the possible outcomes of the study be represented, along with their proba-
bilities? It is possible to express various outcomes using the probability notation in the
previous chapter, e.g. if A were the event that one patient responds to treatment, but this
would quickly become unwieldy.

Instead, the anticipated outcome in the study can be represented as a random vari-
able, which numerically summarizes the possible outcomes of a random experiment. For
example, let X represent the number of patients who respond to treatment; a numerical
value x can be assigned to each possible outcome, and the probabilities of 1,2, . . . ,x pa-
tients having a good response can be expressed as P (X = 1), P (X = 2), . . . , P (X = x). The
distribution of a random variable specifies the probability of each possible outcome asso-
ciated with the random variable.

This chapter will begin by outlining general properties of random variables and their
distributions. The rest of the chapter discusses specific named distributions that are com-
monly used throughout probability and statistics.

3.1 Random variables

3.1.1 Distributions of random variables

Formally, a random variable assigns numerical values to the outcome of a random phe-
nomenon, and is usually written with a capital letter such as X, Y , or Z.

If a coin is tossed three times, the outcome is the sequence of observed heads and
tails. One such outcome might be TTH: tails on the first two tosses, heads on the third.
If the random variable X is the number of heads for the three tosses, X = 1; if Y is the
number of tails, then Y = 2. For the sequence THT, only the order has changed, but the
values of X and Y remain the same. For the sequence HHH, however, X = 3 and Y = 0.
Even in this simple setting, is possible to define other random variables; for example, if Z
is the toss when the first H occurs, then Z = 3 for the first set of tosses (TTH) and 1 for the
third set (HHH).

124



3.1. RANDOM VARIABLES 125

Figure 3.1: Possible outcomes for number of heads in three tosses of a coin

If probabilities can be assigned to the outcomes in a random phenomenon or study,
then those can be used to assign probabilities to values of a random variable. Using in-
dependence, P (HHH) = (1/2)3 = 1/8. Since X in the above example can only be three if
the three tosses are all heads, P (X = 3) = 1/8. The distribution of a random variable is
the collection of probabilities for all of the variable’s unique values. Figure 3.1 shows the
eight possible outcomes when a coin is cossed three times: TTT, HTT, THT, TTH, HHT,
HTH, THH, HHH. For the first set of tosses, X = 0; for the next three, X = 1, then X = 2
for the following three tosses and X = 3 for the last set (HHH).

Using independence again, each of the 8 outcomes have probability 1/8, so P (X =
0) = P (X = 3) = 1/8 and P (X = 1) = P (X = 2) = 3/8. Table 3.2 shows the probability
distribution for X. Probability distributions for random variables follow the rules for
probability; for instance, the sum of the probabilities must be 1.00. The possible outcomes
of X are labeled with a corresponding lower case letter x and subscripts. The values of X
are x1 = 0, x2 = 1, x3 = 2, and x4 = 3; these occur with probabilities 1/8, 3/8, 3/8 and 1/8.

i 1 2 3 4 Total
xi 0 1 2 3 –
P (X = xi) 1/8 3/8 3/8 1/8 8/8 = 1.00

Table 3.2: Tabular form for the distribution of the number of heads in
three coin tosses.
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Figure 3.3: Bar plot of the distribution of the number of heads in three
coin tosses.
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Bar graphs can be used to show the distribution of a random variable. Figure 3.3 is
a bar graph of the distribution of X in the coin tossing example. When bar graphs are
used to show the distribution of a dataset, the heights of the bars show the frequency of
observations; in contrast, bar heights for a probability distribution show the probabilities
of possible values of a random variable.

X is an example of a discrete random variable since it takes on a finite number of
values.1 A continuous random variable can take on any real value in an interval.

In the hypothetical clinical study described at the beginning of this section, how
unlikely would it be for 12 or more patients to respond to the treatment, given that only
20% of patients are expected to respond? Suppose X is a random variable that will denote
the possible number of responding patients, out of a total of 20. X will have the same
probability distribution as the number of heads in a 20 tosses of a weighted coin, where
the probability of landing heads is 0.20. The graph of the probability distribution for X in
Figure 3.4 can be used to approximate this probability. The event of 12 or more consists
of nine values (12, 13, . . . , 20); the graph shows that the probabilities for each value is
extremely small, so the chance of 12 or more responses must be less than 0.01.2
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Figure 3.4: Bar plot of the distribution of the number of responses in a
study with 20 participants and response probability 0.20

3.1.2 Expectation

Just like distributions of data, distributions of random variables also have means, vari-
ances, standard deviations, medians, etc.; these characteristics are computed a bit differ-
ently for random variables. The mean of a random variable is called its expected value
and written E(X). To calculate the mean of a random variable, multiply each possible
value by its corresponding probability and add these products.

1Some discrete random variables have an infinite number of possible values, such as all the non-negative
integers.

2Formulas in Section 3.2 can be used to show that the exact probability is slightly larger than 0.0001.
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Expected value of a discrete random variable

If X takes on outcomes x1, ..., xk with probabilities P (X = x1), ..., P (X = xk), the
expected value of X is the sum of each outcome multiplied by its corresponding
probability:

E(X) = x1P (X = x1) + · · ·+ xkP (X = xk)

=
k∑
i=1

xiP (X = xi) (3.1)

The Greek letter µ may be used in place of the notation E(X).

 Example 3.2 Calculate the expected value of X, where X represents the number of
heads in three tosses of a fair coin.

X can take on values 0, 1, 2, and 3. The probability of each xk is given in Table 3.2.

E(X) = x1P (X = x1) + · · ·+ xkP (X = xk)

= (0)(P (X = 0)) + (1)(P (X = 1)) + (2)(P (X = 2)) + (3)(P (X = 3))

= (0)(1/8) + (1)(3/8) + (2)(3/8) + (3)(1/8) = 12/8

= 1.5

The expected value of X is 1.5.

The expected value for a random variable represents the average outcome. For ex-
ample, E(X) = 1.5 represents the average number of heads in three tosses of a coin, if the
three tosses were repeated many times.3 It often happens with discrete random variables
that the expected value is not precisely one of the possible outcomes of the variable.

E(X)
Expected Value
of X

⊙
Guided Practice 3.3 Calculate the expected value of Y , where Y represents the
number of heads in three tosses of an unfair coin, where the probability of heads is
0.70.4

3.1.3 Variability of random variables

The variability of a random variable can be described with variance and standard devia-
tion. For data, the variance is computed by squaring deviations from the mean (xi −µ) and
then averaging over the number of values in the dataset (Section 1.4.2).

In the case of a random variable, the squared deviations from the mean of the random
variable are used instead, and their sum is weighted by the corresponding probabilities.

3The expected value E(X) can also be expressed as µ, e.g. µ = 1.5
4First, calculate the probability distribution. P (Y = 0) = (1 − 0.70)3 = 0.027 and P (Y = 3) = (0.70)3 = 0.343.

Note that there are three ways to obtain 1 head (HTT, THT, TTH), thus, P (Y = 1) = (3)(0.70)(1 − 0.70)2 = 0.189.
By the same logic, P (Y = 2) = (3)(0.70)2(1 − 0.70) = 0.441. Thus, E(Y ) = (0)(0.027) + (1)(0.189) + (2)(0.441) +
(3)(0.343) = 2.1. The expected value of Y is 2.1.
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This weighted sum of squared deviations equals the variance; the standard deviation is
the square root of the variance.

Variance of a discrete random variable

If X takes on outcomes x1, ..., xk with probabilities P (X = x1), . . . , P (X = xk) and
expected value µ = E(X), then the variance of X, denoted by Var(X) or σ2, is

V ar(X) = (x1 −µ)2P (X = x1) + · · ·+ (xk −µ)2P (X = xk)

=
k∑
i=1

(xi −µ)2P (X = xi) (3.4)

The standard deviation of X, labeled SD(X) or σ , is the square root of the vari-
ance.

Var(X)
Variance
of X

The variance of a random variable can be interpreted as the expectation of the terms
(xi −µ)2; i.e., σ2 = E(X−µ)2. While this compact form is not useful for direct computation,
it can be helpful for understanding the concept of variability in the context of a random
variable; variance is simply the average of the deviations from the mean.

 Example 3.5 Compute the variance and standard deviation of X, the number of
heads in three tosses of a fair coin.

In the formula for the variance, k = 4 and µX = E(X) = 1.5.

σ2
X = (x1 −µX )2P (X = x1) + · · ·+ (x4 −µ)2P (X = x4)

= (0− 1.5)2(1/8) + (1− 1.5)2(3/8) + (2− 1.5)2(3/8) + (3− 1.5)2(1/8)

= 3/4

The variance is 3/4 = 0.75 and the standard deviation is
√

3/4 = 0.866.

The coin tossing scenario provides a simple illustration of the mean and variance
of a random variable. For the rest of this section, a more realistic example will be dis-
cussed—calculating expected health care costs.

In most typical health insurance plans in the United States, members of the plan pay
annually in three categories: a monthly premium, a deductible amount that members pay
each year before the insurance covers service, and “out-of-pocket” costs which include
co-payments for each physician visit or prescription.5 Picking a new health plan involves
estimating costs for the next year based on a person’s best guess at the type and number
of services that will be needed.

In 2015, Harvard University offered several alternative plans to its employees. In the
Health Maintenance Organization (HMO) plan for employees earning less than $70,000
per year, the monthly premium was $79, and the co-payment for each office visit or phys-
ical therapy session was $20. After a new employee examined her health records for the
last 10 years, she noticed that in three of the 10 years, she only visited the office of her
primary care physician for one annual physical. In four of the 10 years, she visited her
physician three times: once for a physical, and twice for cases of the flu. In two of the

5The deductible also includes care and supplies that are not covered by insurance.
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years, she had four visits. In one of the 10 years, she experienced a knee injury that re-
quired 3 office visits and 5 physical therapy sessions.

 Example 3.6 Ignoring the cost of prescription drugs, over-the-counter medications,
and the annual deductible amount, calculate the expectation and the standard devi-
ation of the expected annual health care cost for this employee.

Let the random variable X denote annual health care costs, where xi represents the
costs in a year for i number of visits. If the last ten years are an accurate picture of
annual costs for this employee, X will have four possible values.

The total cost of the monthly premiums in a single year is 12× $79 = $948. The cost
of each visit is $20, so the total visit cost for a year is $20 times the number of visits.

For example, the first column in the table contains information about the years in
which the employee had one office visit. Adding the $948 for the annual premium
and $20 for one visit results in x1 = $968; P (X = xi) = 3/10 = 0.30.

i 1 2 3 4 Sum
Number of visits 1 3 4 8
xi 968 1008 1028 1108
P (X = xi) 0.30 0.40 0.20 0.10 1.00
xiP (X = xi) 290.40 403.20 205.60 110.80 1010.00

The expected cost of health care for a year,
∑
i xiP (X = xi), is µ = $1010.00.

i 1 2 3 4 Sum
Number of visits 1 3 4 8
xi 968 1008 1028 1108
P (X = xi) 0.30 0.40 0.20 0.10 1.00
(xi)P (X = xi) 290.40 403.20 205.60 110.80 1010.00
xi −µ -42.00 -2.00 18.00 98.00
(xi −µ)2 1764.00 4.00 324.00 9604
(xi −µ)2P (X = xi) 529.20 1.60 64.80 960.40 1556.00

The variance of X,
∑
i(xi −µ)2P (X = xi), is σ2 = 1556.00, and the standard deviation

is σ = $39.45.6

3.1.4 Linear combinations of random variables

Sums of random variables arise naturally in many problems. In the health insurance
example, the amount spent by the employee during her next five years of employment can
be represented as X1 +X2 +X3 +X4 +X5, where X1 is the cost of the first year, X2 the second
year, etc. If the employee’s domestic partner has health insurance with another employer,
the total annual cost to the couple would be the sum of the costs for the employee (X)
and for her partner (Y ), or X +Y . In each of these examples, it is intuitively clear that the
average cost would be the sum of the average of each term.

Sums of random variables represent a special case of linear combinations of variables.

6Note that the standard deviation always has the same units as the original measurements.
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Linear combinations of random variables and their expected values

If X and Y are random variables, then a linear combination of the random vari-
ables is given by

aX + bY

where a and b are constants. The mean of a linear combination of random vari-
ables is

E(aX + bY ) = aE(X) + bE(Y ) = aµX + bµY

The formula easily generalizes to a sum of any number of random variables. For
example, the average health care cost for 5 years, given that the cost for services remains
the same, would be:

E(X1 +X2 +X3 +X4 +X5) = E(5X1) = 5E(X1) = (5)(1010) = $5,050

The formula implies that for a random variable Z, E(a + Z) = a + E(Z). This could
have been used when calculating the average health costs for the employee by defining a
as the fixed cost of the premium (a = $948) and Z as the cost of the physician visits. Thus,
the total annual cost for a year could be calculated as: E(a+Z) = a+E(Z) = $948 +E(Z) =
$948 + .30(1× $20) + .40(3× $20) + .20(4× $20) + 0.10(8× $20) = $1,010.00.⊙

Guided Practice 3.7 Suppose the employee will begin a domestic partnership in
the next year. Although she and her companion will begin living together and shar-
ing expenses, they will each keep their existing health insurance plans; both, in fact,
have the same plan from the same employer. In the last five years, her partner vis-
ited a physician only once in four of the ten years, and twice in the other six years.
Calculate the expected total cost of health insurance to the couple in the next year.7

Calculating the variance and standard deviation of a linear combination of random
variables requires more care. The formula given here requires that the random variables
in the linear combination be independent, such that an observation on one of the variables
provides no information about the value of the other variable.

Variability of linear combinations of random variables

Var(aX + bY ) = a2Var(X) + b2Var(Y )

This equation is valid only if the random variables are independent of each other.

For the transformation a+bZ, the variance is b2Var(Z), since a constant a has variance
0. When b = 1, variance of a+Z is Var(Z)—adding a constant to a random variable has no
effect on the variability of the random variable.

7Let X represent the costs for the employee and Y represent the costs for her partner. E(X) = $1,010.00,
as previously calculated. E(Y ) = 948 + 0.4(1 × $20) + 0.6(2 × $20) = $980.00. Thus, E(X + Y ) = E(X) + E(Y ) =
$1,010.00 + $980.00 = $1,990.00.
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 Example 3.8 Calculate the variance and standard deviation for the combined cost
of next year’s health care for the two partners, assuming that the costs for each per-
son are independent.

Let X represent the sum of costs for the employee and Y the sum of costs for her
partner.

First, calculate the variance of health care costs for the partner. The partner’s costs
are the sum of the annual fixed cost and the variable annual costs, so the variance
will simply be the variance o the variable costs. If Z represents the component of the
variable costs, E(Z) = 0.4(1× $20) + 0.6(2× $20) = $8 + $24 = $32. Thus, the variance
of Z equals

Var(Z) = 0.4(20− 32)2 + 0.6(40− 32)2 = 96.

Under the assumption of independence, Var(X +Y ) = Var(X) + Var(Y ) = 1556 + 96 =
1652, and the standard deviation is

√
1652 = $40.64.

The example of health insurance costs has been simplified to make the calculations
clearer. It ignores the fact that many plans have a deductible amount, and that plan mem-
bers pay for services at different rates before and after the deductible has been reached.
Often, insured individuals no longer need to pay for services at all once a maximum
amount has been reached in a year. The example also assumes that the proportions of
number of physician visits per year, estimated from the last 10 years, can be treated as
probabilities measured without error. Had a different timespan been chosen, the propor-
tions might well have been different.

It also relies on the assumption that health care costs for the two partners are inde-
pendent. Two individuals living together may pass on infectious diseases like the flu, or
may participate together in activities that lead to similar injuries, such as skiing or long
distance running. Section 3.6 shows how to adjust a variance calculation when indepen-
dence is unrealistic.
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3.2 Binomial distribution

The hypothetical clinical study and coin tossing example discussed earlier in this chapter
are both examples of experiments that can be modeled with a binomial distribution. The
binomial distribution is a more general case of another named distribution, the Bernoulli
distribution.

3.2.1 Bernoulli distribution

Psychologist Stanley Milgram began a series of experiments in 1963 to study the effect
of authority on obedience. In a typical experiment, a participant would be ordered by
an authority figure to give a series of increasingly severe shocks to a stranger. Milgram
found that only about 35% of people would resist the authority and stop giving shocks
before the maximum voltage was reached. Over the years, additional research suggested
this number is approximately consistent across communities and time.8

Each person in Milgram’s experiment can be thought of as a trial. Suppose that a
trial is labeled a success if the person refuses to administer the worst shock. If the person
does administer the worst shock, the trial is a failure. The probability of a success can
be written as p = 0.35. The probability of a failure is sometimes denoted with q = 1− p.

When an individual trial only has two possible outcomes, it is called a Bernoulli
random variable. It is arbitrary as to which outcome is labeled success.

Bernoulli random variables are often denoted as 1 for a success and 0 for a failure.
Suppose that ten trials are observed, of which 6 are successes and 4 are failures:

0 1 1 1 1 0 1 1 0 0

The sample proportion, p̂, is the sample mean of these observations:

p̂ =
# of successes

# of trials
=

0 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 0
10

= 0.6

Since 0 and 1 are numerical outcomes, the mean and standard deviation of a Bernoulli
random variable can be defined. If p is the true probability of a success, then the mean of
a Bernoulli random variable X is given by

µ = E[X] = P (X = 0)× 0 + P (X = 1)× 1

= (1− p)× 0 + p × 1 = 0 + p = p

Similarly, the variance of X can be computed:

σ2 = P (X = 0)(0− p)2 + P (X = 1)(1− p)2

= (1− p)p2 + p(1− p)2 = p(1− p)

The standard deviation is σ =
√
p(1− p).

Bernoulli random variable

If X is a random variable that takes value 1 with probability of success p and 0
with probability 1 − p, then X is a Bernoulli random variable with mean p and
standard deviation

√
p(1− p).

8Find further information on Milgram’s experiment at
www.cnr.berkeley.edu/ucce50/ag-labor/7article/article35.htm.

http://www.openintro.org/redirect.php?go=textbook-milgram&referrer=os3_pdf
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Suppose X represents the outcome of a single toss of a fair coin, where heads is
labeled success. X is a Bernoulli random variable with probability of success p = 0.50;
this can be expressed as X ∼ Bern(p), or specifically, X ∼ Bern(0.50). It is essential to
specify the probability of success when characterizing a Bernoulli random variable. For
example, although the outcome of a single toss of an unfair coin can also be represented
by a Bernoulli, it will have a different probability distribution since p does not equal 0.50
for an unfair coin.

The success probability p is the parameter of the distribution, and identifies a spe-
cific Bernoulli distribution out of the entire family of Bernoulli distributions where p can
be any value between 0 and 1 (inclusive).

Bern(p)
Bernoulli dist.
with p prob. of
success Example 3.9 Suppose that four individuals are randomly selected to participate in

Milgram’s experiment. What is the chance that there will be exactly one success-
ful trial, assuming independence between trials? Suppose that the probability of
success remains 0.35.

Consider a scenario in which there is one success (i.e., one person refuses to give the
strongest shock). Label the individuals as A, B, C, and D:

P (A = refuse, B = shock, C = shock, D = shock)

= P (A = refuse) P (B = shock) P (C = shock) P (D = shock)

= (0.35)(0.65)(0.65)(0.65) = (0.35)1(0.65)3 = 0.096

However, there are three other possible scenarios: either B, C, or D could have been
the one to refuse. In each of these cases, the probability is also (0.35)1(0.65)3. These
four scenarios exhaust all the possible ways that exactly one of these four people
could refuse to administer the most severe shock, so the total probability of one
success is (4)(0.35)1(0.65)3 = 0.38.

3.2.2 The binomial distribution

The Bernoulli distribution is unrealistic in all but the simplest of settings. However, it is
a useful building block for other distributions. The binomial distribution describes the
probability of having exactly k successes in n independent Bernoulli trials with probabil-
ity of a success p. In Example 3.9, the goal was to calculate the probability of 1 success
out of 4 trials, with probability of success 0.35 (n = 4, k = 1, p = 0.35).

Like the Bernoulli distribution, the binomial is a discrete distribution, and can take
on only a finite number of values. A binomial variable has values 0, 1, 2, . . . , n.

A general formula for the binomial distribution can be developed from re-examining
Example 3.9. There were four individuals who could have been the one to refuse, and
each of these four scenarios had the same probability. Thus, the final probability can be
written as:

[# of scenarios]× P (single scenario) (3.10)

The first component of this equation is the number of ways to arrange the k = 1 successes
among the n = 4 trials. The second component is the probability of any of the four (equally
probable) scenarios.
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Consider P (single scenario) under the general case of k successes and n−k failures in
the n trials. In any such scenario, the Multiplication Rule for independent events can be
applied:

pk(1− p)n−k

Secondly, there is a general formula for the number of ways to choose k successes in
n trials, i.e. arrange k successes and n− k failures:(

n
k

)
=

n!
k!(n− k)!

The quantity
(n
k

)
is read n choose k.9 The exclamation point notation (e.g. k!) denotes a

factorial expression.10

Using the formula, the number of ways to choose k = 1 successes in n = 4 trials can
be computed as: (

4
1

)
=

4!
1!(4− 1)!

=
4!

1!3!
=

4× 3× 2× 1
(1)(3× 2× 1)

= 4

Substituting n choose k for the number of scenarios and pk(1 − p)n−k for the single
scenario probability in Equation (3.10) yields the general binomial formula.

Binomial distribution

Suppose the probability of a single trial being a success is p. The probability of
observing exactly k successes in n independent trials is given by

P (X = k) =
(
n
k

)
pk(1− p)n−k =

n!
k!(n− k)!

pk(1− p)n−k (3.11)

Additionally, the mean, variance, and standard deviation of the number of ob-
served successes are

µ = np σ2 = np(1− p) σ =
√
np(1− p) (3.12)

A binomial random variable X can be expressed as X ∼ Bin(n,p).
Bin(n,p)
Binomial dist.
with n trials
& p prob. of
success

TIP: Is it binomial? Four conditions to check.
(1) The trials are independent.
(2) The number of trials, n, is fixed.
(3) Each trial outcome can be classified as a success or failure.
(4) The probability of a success, p, is the same for each trial.

 Example 3.13 What is the probability that 3 of 8 randomly selected participants
will refuse to administer the worst shock?

9Other notation for n choose k includes nCk , Ckn , and C(n,k).
100! = 1 , 1! = 1, 2! = 2× 1 = 2, . . . , n! = n× (n− 1)× . . .2× 1.
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First, check the conditions for applying the binomial model. The number of trials
is fixed (n = 8) and each trial outcome can be classified as either success or failure.
The sample is random, so the trials are independent, and the probability of success
is the same for each trial.

For the outcome of interest, k = 3 successes occur in n = 8 trials, and the probability
of a success is p = 0.35. Thus, the probability that 3 of 8 will refuse is given by

P (X = 3) =
(
8
3

)
(0.35)3(1− 0.35)8−3 =

8!
3!(8− 3)!

(0.35)3(1− 0.35)8−3

= (56)(0.35)3(0.65)5

= 0.28

 Example 3.14 What is the probability that at most 3 of 8 randomly selected partic-
ipants will refuse to administer the worst shock?

The event of at most 3 out of 8 successes can be thought of as the combined proba-
bility of 0, 1, 2, and 3 successes. Thus, the probability that at most 3 of 8 will refuse
is given by:

P (X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)

=
(
8
0

)
(0.35)0(1− 0.35)8−0 +

(
8
1

)
(0.35)1(1− 0.35)8−1

+
(
8
2

)
(0.35)2(1− 0.35)8−2 +

(
8
3

)
(0.35)3(1− 0.35)8−3

= (1)(0.35)0(1− 0.35)8 + (8)(0.35)1(1− 0.35)7

+ (28)(0.35)2(1− 0.35)6 + (56)(0.35)3(1− 0.35)5

= 0.706

 Example 3.15 If 40 individuals were randomly selected to participate in the exper-
iment, how many individuals would be expected to refuse to administer the worst
shock? What is the standard deviation of the number of people expected to refuse?

Both quantities can directly be computed from the formulas in Equation (3.12). The
expected value (mean) is given by: µ = np = 40× 0.35 = 14. The standard deviation
is: σ =

√
np(1− p) =

√
40× 0.35× 0.65 = 3.02.⊙

Guided Practice 3.16 The probability that a smoker will develop a severe lung
condition in their lifetime is about 0.30. Suppose that 5 smokers are randomly se-
lected from the population. What is the probability that (a) one will develop a severe
lung condition? (b) that no more than one will develop a severe lung condition? (c)
that at least one will develop a severe lung condition?11

11Let p = 0.30; X ∼ Bin(5,0.30). (a) P (X = 1) =
(5
1
)
(0.30)1(1− 0.30)5−1 = 0.36 (b) P (X ≤ 1) = P (X = 0) + P (X =

1) =
(5
0
)
(0.30)0(1− 0.30)5−0 + 0.36 = 0.53 (c) P (X ≥ 1) = 1− P (X = 0) = 1− 0.36 = 0.83
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3.3 Normal distribution

Among the many distributions seen in practice, one is by far the most common: the
normal distribution, which has the shape of a symmetric, unimodal bell curve. Many
variables are nearly normal, which makes the normal distribution useful for a variety of
problems. For example, characteristics such as human height closely follow the normal
distribution.

3.3.1 Normal distribution model

The normal distribution model always describes a symmetric, unimodal, bell-shaped curve.
However, the curves can differ in center and spread; the model can be adjusted using mean
and standard deviation. Changing the mean shifts the bell curve to the left or the right,
while changing the standard deviation stretches or constricts the curve. Figure 3.5 shows
the normal distribution with mean 0 and standard deviation 1 in the left panel and the
normal distribution with mean 19 and standard deviation 4 in the right panel. Figure 3.6
shows these distributions on the same axis.

−3 −2 −1 0 1 2 3

Y

7 11 15 19 23 27 31

Figure 3.5: Both curves represent the normal distribution; however, they
differ in their center and spread. The normal distribution with mean 0
and standard deviation 1 is called the standard normal distribution.

0 10 20 30

Figure 3.6: The normal models shown in Figure 3.5 but plotted together
and on the same scale.

For any given normal distribution with mean µ and standard deviation σ , the distri-
bution can be written as N (µ,σ ); µ and σ are the parameters of the normal distribution..

N (µ,σ )
Normal dist.
with mean µ
& st. dev. σ

For example, N (0,1) refers to the standard normal distribution, as shown in Figure 3.5.
Unlike the Bernoulli and binomial distributions, the normal distribution is a contin-

uous distribution.



3.3. NORMAL DISTRIBUTION 137

3.3.2 Standardizing with Z-scores

The Z-score of an observation quantifies how far the observation is from the mean, in units Z
Z-score, the
standardized
observation

of standard deviation(s). If x is an observation from a distribution N (µ,σ ), the Z-score is
mathematically defined as:

Z =
x −µ
σ

An observation equal to the mean has a Z-score of 0. Observations above the mean
have positive Z-scores, while observations below the mean have negative Z-scores. For
example, if an observation is one standard deviation above the mean, it has a Z-score of 1;
if it is 1.5 standard deviations below the mean, its Z-score is -1.5.

Z-scores can be used to identify which observations are more extreme than others,
and are especially useful when comparing observations from different normal distribu-
tions. One observation x1 is said to be more unusual than another observation x2 if the
absolute value of its Z-score is larger than the absolute value of the other observation’s
Z-score: |Z1| > |Z2|. In other words, the further an observation is from the mean in either
direction, the more extreme it is.

 Example 3.17 The SAT and the ACT are two standardized tests commonly used
for college admissions in the United States. The distribution of test scores are both
nearly normal. For the SAT,N (1500,300); for the ACT,N (21,5). While some colleges
request that students submit scores from both tests, others allow students the choice
of either the ACT or the SAT. Suppose that one student scores an 1800 on the SAT
(Student A) and another scores a 24 on the ACT (Student B). A college admissions
officer would like to compare the scores of the two students to determine which
student performed better.

Calculate a Z-score for each student; i.e., convert x to Z.

Using µSAT = 1500, σSAT = 300, and xA = 1800, find Student A’s Z-score:

ZA =
xA −µSAT
σSAT

=
1800− 1500

300
= 1

For Student B:

ZB =
xB −µACT
σACT

=
24− 21

5
= 0.6

Student A’s score is 1 standard deviation above average on the SAT, while Student
B’s score is 0.6 standard deviations above the mean on the ACT. As illustrated in
Figure 3.7, Student A’s score is more extreme, indicating that Student A has scored
higher with respect to other scores than Student B.
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X

900 1200 1500 1800 2100

Student A

11 16 21 26 31

Student B

Figure 3.7: Scores of Students A and B plotted on the distributions of SAT
and ACT scores.

The Z-score

The Z-score of an observation quantifies how far the observation is from the
mean, in units of standard deviation(s). The Z-score for an observation x that
follows a distribution with mean µ and standard deviation σ can be calculated
using

Z =
x −µ
σ

 Example 3.18 How high would a student need to score on the ACT to have a score
equivalent to Student A’s score of 1800 on the SAT?

As shown in Example 3.7, a score of 1800 on the SAT is 1 standard deviation above
the mean. ACT scores are normally distributed with mean 21 and standard devia-
tion 5. To convert a value from the standard normal curve (Z) to one on a normal
distribution N (µ,σ ):

x = µ+Zσ

Thus, a student would need a score of 21 + 1(5) = 26 on the ACT to have a score
equivalent to 1800 on the SAT.⊙
Guided Practice 3.19 Systolic blood pressure (SBP) for adults in the United States
aged 18-39 follow an approximate normal distribution, N (115,17.5). As age in-
creases, systolic blood pressure also tends to increase. Mean systolic blood pressure
for adults 60 years of age and older is 136 mm Hg, with standard deviation 40 mm
Hg. Systolic blood pressure of 140 mm Hg or higher is indicative of hypertension
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(high blood pressure). (a) How many standard deviations away from the mean is a
30-year-old with systolic blood pressure of 125 mm Hg? (b) Compare how unusual
a systolic blood pressure of 140 mm Hg is for a 65-year-old, versus a 30-year-old.12

3.3.3 The empirical rule

The empirical rule (also known as the 68-95-99.7 rule) states that for a normal distri-
bution, almost all observations will fall within three standard deviations of the mean.
Specifically, 68% of observations are within one standard deviation of the mean, 95% are
within two SD’s, and 99.7% are within three SD’s.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

99.7%

95%

68%

Figure 3.8: Probabilities for falling within 1, 2, and 3 standard deviations
of the mean in a normal distribution.

While it is possible for a normal random variable to take on values 4, 5, or even more
standard deviations from the mean, these occurrences are extremely rare if the data are
nearly normal. For example, the probability of being further than 4 standard deviations
from the mean is about 1-in-30,000.

3.3.4 Calculating normal probabilities

The normal distribution is a continuous probability distribution. Recall from Section 2.1.5
that the total area under the density curve is always equal to 1, and the probability that
a variable has a value within a specified interval is the area under the curve over that in-
terval. By using either statistical software or normal probability tables, the normal model
can be used to identify a probability or percentile based on the corresponding Z-score
(and vice versa).

A normal probability table is given in Appendix A.1 on page 347 and abbreviated
in Table 3.10. This table can be used to identify the percentile corresponding to any
particular Z-score; for instance, the percentile of Z = 0.43 is shown in row 0.4 and column
0.03 in Table 3.10: 0.6664, or the 66.64th percentile. First, find the proper row in the
normal probability table up through the first decimal, and then determine the column
representing the second decimal value. The intersection of this row and column is the
percentile of the observation. This value also represents the probability that the standard
normal variable Z takes on a value of 0.43 or less; i.e. P (Z ≤ 0.43) = 0.6664.

12(a) For x1 = 140 mm Hg: Z1 = x1−µ
σ = 140−115

17.5 = 1.43. (b) For x1 = 140 mm Hg: Z2 = x2−µ
σ = 140−137

40 = 0.1.
While an SBP of 140 mm Hg is almost 1.5 standard deviations above the mean for a 30-year-old, it is only 0.1
standard deviations above the mean for a 65-year-old.
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negative Z positive Z

Figure 3.9: The area to the left of Z represents the percentile of the obser-
vation.

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

...
...

...
...

...
...

...
...

...
...

...

Table 3.10: A section of the normal probability table. The percentile for
a normal random variable with Z = 0.43 has been highlighted, and the
percentile closest to 0.8000 has also been highlighted.

The table can also be used to find the Z-score associated with a percentile. For exam-
ple, to identify Z for the 80th percentile, look for the value closest to 0.8000 in the middle
portion of the table: 0.7995. The Z-score for the 80th percentile is given by combining the
row and column Z values: 0.84.

 Example 3.20 Student A from Example 3.17 earned a score of 1800 on the SAT,
which corresponds to Z = 1. What percentile is this score associated with?

In this context, the percentile is the percentage of people who earned a lower SAT
score than Student A. From the normal table, Z of 1.00 is 0.8413. Thus, the student
is in the 84th percentile of test takers. This area is shaded in Figure 3.11.⊙
Guided Practice 3.21 Determine the proportion of SAT test takers who scored
better than Student A on the SAT.13

13If 84% had lower scores than Student A, the number of people who had better scores must be 16%.
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600 900 1200 1500 1800 2100 2400

Figure 3.11: The normal model for SAT scores, with shaded area repre-
senting scores below 1800.

3.3.5 Normal probability examples

There are two main types of problems that involve the normal distribution: calculating
probabilities from a given value (whether X or Z), or identifying the observation that
corresponds to a particular probability.

 Example 3.22 Cumulative SAT scores are well-approximated by a normal model,
N (1500,300). What is the probability that a randomly selected test taker scores at
least 1630 on the SAT?

For any normal probability problem, it can be helpful to start out by drawing the
normal curve and shading the area of interest.

1630

To find the shaded area under the curve, convert 1630 to a Z-score:

Z =
x −µ
σ

=
1630− 1500

300
=

130
300

= 0.43

Look up the percentile of Z = 0.43 in the normal probability table shown in Ta-
ble 3.10 or in Appendix A.1 on page 347: 0.6664. However, note that the percentile
describes those who had a Z-score lower than 0.43, or in other words, the area below
0.43. To find the area above Z = 0.43, subtract the area of the lower tail from the
total area under the curve, 1:

1.0000 0.6664 0.3336 = 

The probability that a student scores at least 1630 on the SAT is 0.3336.
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TIP: Discrete versus continuous probabilities
Recall that the probability of a continuous random variable equaling some
exact value is always 0. As a result, for a continuous random variable X,
P (X ≤ x) = P (X < x) and P (X ≥ x) = P (X > x). It is valid to state that
P (X ≥ x) = 1− P (X ≤ x) = 1− P (X < x).

This is not the case for discrete random variables. For example, for a discrete
random variable Y , P (Y ≥ 2) = 1− P (Y < 2) = 1− P (Y ≤ 1). It would be incorrect to
claim that P (Y ≥ 2) = 1− P (Y ≤ 2).

⊙
Guided Practice 3.23 What is the probability of a student scoring at most 1630 on
the SAT?14

⊙
Guided Practice 3.24 Systolic blood pressure for adults 60 years of age and older
in the United States is approximately normally distributed: N (136,40). What is the
probability of an adult in this age group having systolic blood pressure of 140 mm
Hg or greater?15

 Example 3.25 The height of adult males in the United States between the ages of 20
and 62 is nearly normal, with mean 70 inches and standard deviation 3.3 inches.16

What is the probability that a random adult male is between 5’9” and 6’2”?

These heights correspond to 69 inches and 74 inches. First, draw the figure. The
area of interest is an interval, rather than a tail area.

69 74

To find the middle area, find the area to the left of 74; from that area, subtract the
area to the left of 69.

First, convert to Z-scores:

Z74 =
x −µ
σ

=
74− 70

3.3
= 1.21 Z62 =

x −µ
σ

=
69− 70

3.3
= −0.30

From the normal probability table, the areas are respectively, 0.8868 and 0.3821.
The middle area is 0.8868 − 0.3821 = 0.5048. The probability of being between
heights 5’9” and 6’2” is 0.5048.

0.8868 0.3821 0.5048 = 

14This probability was calculated as part of Example 3.22: 0.6664. A picture for this exercise is represented
by the shaded area below “0.6664” in Example 3.22.

15The Z-score for this observation was calculated in Exercise 3.19 as 0.1. From the table, this corresponds to
0.54.

16As based on a sample of 100 men, from the USDA Food Commodity Intake Database.
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⊙
Guided Practice 3.26 What percentage of adults in the United States ages 60 and
older have blood pressure between 145 and 130 mm Hg?17

 Example 3.27 How tall is a man with height in the 40th percentile?

First, draw a picture. The lower tail probability is 0.40, so the shaded area must start
before the mean.

70

  40%
(0.40)

Determine the Z-score associated with the 40th percentile. Because the percentile is
below 50%, Z will be negative. Look for the probability inside the negative part of
table that is closest to 0.40: 0.40 falls in row −0.2 and between columns 0.05 and
0.06. Since it falls closer to 0.05, choose Z = −0.25.

Convert the Z-score to X, where X ∼N (70,3.3).

X = µ+ σZ = 70 + (−0.25)(3.3) = 69.18

A man with height in the 40th percentile is 69.18 inches tall, or about 5’ 9”.⊙
Guided Practice 3.28 (a) What is the 95th percentile for SAT scores? (b) What is
the 97.5th percentile of the male heights? 18

3.3.6 Normal approximation to the binomial distribution

The normal distribution can be used to approximate other distributions, such as the bi-
nomial distribution. The binomial formula is cumbersome when sample size is large,
particularly when calculating probabilities for a large number of observations. Under
certain conditions, the normal distribution can be used to approximate binomial proba-
bilities. This method was widely used when calculating binomial probabilities by hand
was the only option. Nowadays, modern statistical software is capable of calculating exact
binomial probabilities even for very large n. The normal approximation to the binomial
is discussed here since it is an important result that will be revisited in later chapters.

Consider the binomial model when probability of success is p = 0.10. Figure 3.12
shows four hollow histograms for simulated samples from the binomial distribution using
four different sample sizes: n = 10,30,100,300. As the sample size increases from n = 10
to n = 300, the distribution is transformed from a blocky and skewed distribution into
one resembling the normal curve.

17First calculate Z-scores, then find the percent below 145 mm Hg and below 130 mm Hg: Z145 = 0.23→
0.5890, Z130 = −0.15→ 0.4404 (area above). Final answer: 0.5890− 0.4404 = 0.1486.

18(a) Look for 0.95 in the probability portion (middle part) of the normal probability table: row 1.6 and
(about) column 0.05, i.e. Z95 = 1.65. Knowing Z95 = 1.65, µ = 1500, and σ = 300, convert Z to x: 1500 +
(1.65)(300) = 1995. (b) Similarly, find Z97.5 = 1.96, and convert to x: x97.5 = 76.5 inches.
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n  =  10

0 2 4 6

n  =  30

0 2 4 6 8 10

n  =  100

0 5 10 15 20

n  =  300

10 20 30 40 50

Figure 3.12: Hollow histograms of samples from the binomial model when
p = 0.10. The sample sizes for the four plots are n = 10, 30, 100, and 300,
respectively.

Normal approximation of the binomial distribution

The binomial distribution with probability of success p is nearly normal when the
sample size n is sufficiently large such that np and n(1 − p) are both at least 10.
The approximate normal distribution has parameters corresponding to the mean
and standard deviation of the binomial distribution:

µ = np σ =
√
np(1− p)

 Example 3.29 Approximately 20% of the US population smokes cigarettes. A local
government commissioned a survey of 400 randomly selected individuals to inves-
tigate whether their community might have a lower smoker rate than 20%. The
survey found that 59 of the 400 participants smoke cigarettes. If the true propor-
tion of smokers in the community is 20%, what is the probability of observing 59 or
fewer smokers in a sample of 400 people?

The desired probability is equivalent to the sum of the individual probabilities of
observing k = 0, 1, ..., 58, or 59 smokers in a sample of n = 400: P (X ≤ 59). Confirm
that the normal approximation is valid: np = 400× 0.20 = 80, n(1− p) = 400× 0.8 =
320. To use the normal approximation, calculate the mean and standard deviation
from the binomial model:

µ = np = 80 σ =
√
np(1− p) = 8
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Convert 59 to a Z-score: Z =
59− 80

8
= −2.63. Use the normal probability table to

identify the left tail area, which is 0.0043.

This estimate is very close to the answer derived from the exact binomial calculation:

P (k = 0 or k = 1 or · · · or k = 59) = P (k = 0) + P (k = 1) + · · ·+ P (k = 59) = 0.0041

However, even when the conditions for using the approximation are met, the normal
approximation to the binomial tends to perform poorly when estimating the probability
of a small range of counts. Suppose the normal approximation is used to compute the
probability of observing 69, 70, or 71 smokers in 400 when p = 0.20. In this setting,
the exact binomial and normal approximation result in notably different answers: the
approximation gives 0.0476, while the binomial returns 0.0703.

The cause of this discrepancy is illustrated in Figure 3.13, which shows the areas rep-
resenting the binomial probability (outlined) and normal approximation (shaded). Notice
that the width of the area under the normal distribution is 0.5 units too slim on both sides
of the interval.

60 70 80 90 100

Figure 3.13: A normal curve with the area between 69 and 71 shaded. The
outlined area represents the exact binomial probability.

The normal approximation can be improved if the cutoff values for the range of ob-
servations is modified slightly: the lower value should be reduced by 0.5 and the upper
value increased by 0.5. The normal approximation with continuity correction gives 0.0687
for the probability of observing 69, 70, or 71 smokers in 400 when p = 0.20, which is closer
to the exact binomial result of 0.0703.

This adjustment method is known as a continuity correction, which allows for in-
creased accuracy when a continuous distribution is used to approximate a discrete one.
The modification is typically not necessary when computing a tail area, since the total
interval in that case tends to be quite wide.

3.3.7 Evaluating the normal approximation

The normal model can also be used to approximate data distributions. While using a
normal model can be convenient, it is important to remember that normality is always
an approximation. Testing the appropriateness of the normal assumption is a key step in
many data analyses.

Example 3.27 suggests the distribution of heights of US males is well approximated
by the normal model. There are two visual methods used to assess the assumption of nor-
mality. The first is a simple histogram with the best fitting normal curve overlaid on the
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Male heights (inches)

60 65 70 75 80
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Figure 3.14: A sample of 100 male heights. Since the observations are
rounded to the nearest whole inch, the points in the normal probability
plot appear to jump in increments.

plot, as shown in the left panel of Figure 3.14. The sample mean x̄ and standard deviation
s are used as the parameters of the best fitting normal curve. The closer this curve fits the
histogram, the more reasonable the normal model assumption. More commonly, a nor-
mal probability plot is used, such as the one shown in the right panel of Figure 3.14.19 If
the points fall on or near the line, the data closely follow the normal model.

 Example 3.30 Three datasets were simulated from a normal distribution, with
sample sizes n = 40, n = 100, and n = 400; the histograms and normal probabil-
ity plots of the datasets are shown in Figure 3.15. What happens as sample size
increases?
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Figure 3.15: Histograms and normal probability plots for three simulated
normal data sets; n = 40 (left), n = 100 (middle), n = 400 (right).

As sample size increases, the data more closely follows the normal distribution; the

19Also called a quantile-quantile plot, or Q-Q plot.
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histograms become more smooth, and the points on the Q-Q plots show fewer devi-
ations from the line.

It is important to remember that when evaluating normality in a small dataset, ap-
parent deviations from normality may simply be due to small sample size. Remem-
ber that all three of these simulated datasets are drawn from a normal distribution.

When assessing the normal approximation in real data, it will be rare to observe a
Q-Q plot as clean as the one shown for n = 400. Typically, the normal approximation
is reasonable even if there are some small observed departures from normality in the
tails, such as in the plot for n = 100.
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 Example 3.31 Would it be reasonable to use the normal distribution to accurately
calculate percentiles of heights of NBA players? Consider all 435 NBA players from
the 2008-9 season presented in Figure 3.16.20

Height (inches)
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Figure 3.16: Histogram and normal probability plot for the NBA heights
from the 2008-9 season.

The histogram in the left panel is slightly left skewed, and the points in the normal
probability plot do not closely follow a straight line, particularly in the upper quan-
tiles. The normal model is not an accurate approximation of NBA player heights.

 Example 3.32 Consider the poker winnings of an individual over 50 days. A his-
togram and normal probability plot of these data are shown in Figure 3.17 Evaluate
whether a normal approximation is appropriate.

Poker earnings (US$)
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Figure 3.17: A histogram of poker data with the best fitting normal plot
and a normal probability plot.

The data are very strongly right skewed in the histogram, which corresponds to
the very strong deviations on the upper right component of the normal probability
plot. These data show very strong deviations from the normal model; the normal
approximation should not be applied to these data.

20These data were collected from www.nba.com.

http://www.openintro.org/redirect.php?go=textbook-nba_com&referrer=os3_pdf
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⊙
Guided Practice 3.33 Determine which data sets represented in Figure 3.18 plau-
sibly come from a nearly normal distribution.21
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Figure 3.18: Four normal probability plots for Guided Practice 3.33.

When observations spike downwards on the left side of a normal probability plot,
this indicates that the data have more outliers in the left tail expected under a normal
distribution. When observations spike upwards on the right side, the data have more
outliers in the right tail than expected under the normal distribution.⊙

Guided Practice 3.34 Figure 3.19 shows normal probability plots for two distri-
butions that are skewed. One distribution is skewed to the low end (left skewed)
and the other to the high end (right skewed). Which is which?22

21Answers may vary. The top-left plot shows some deviations in the smallest values in the dataset; specif-
ically, the left tail shows some large outliers. The top-right and bottom-left plots do not show any obvious or
extreme deviations from the lines for their respective sample sizes, so a normal model would be reasonable. The
bottom-right plot has a consistent curvature that suggests it is not from the normal distribution. From examin-
ing the vertical coordinates of the observations, most of the data are between -20 and 0, then there are about five
observations scattered between 0 and 70; this distribution has strong right skew.

22Examine where the points fall along the vertical axis. In the first plot, most points are near the low end
with fewer observations scattered along the high end; this describes a distribution that is skewed to the high
end. The second plot shows the opposite features, and this distribution is skewed to the low end.
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Figure 3.19: Normal probability plots for Guided Practice 3.34.

3.4 Poisson distribution

The Poisson distribution is often useful for estimating the number of events in a large
population over a unit of time, if the individuals within the population are independent.
For example, consider the population of New York City: 8 million individuals. In a given
day, how many individuals might be hospitalized for acute myocardial infarction (AMI),
i.e., a heart attack? According to historical records, about 4.4 individuals on average. A
histogram of the number of occurrences of AMI on 365 days for NYC is shown in Fig-
ure 3.20.23
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Figure 3.20: A histogram of the number of occurrences of AMI on 365
separate days in NYC.

The rate for a Poisson distribution is the average number of occurrences in a mostly-
fixed population per unit of time. The only parameter in the Poisson distribution is the
rate, and it is typically denoted by λ (the Greek letter lambda). Using the rate, the proba-

λ
Rate for the
Poisson dist. bility of observing exactly k events in a single unit of time can be described. The histogram

in Figure 3.20 approximates a Poisson distribution with rate equal to 4.4 events in a day,
for a population of 8 million.

23These data are simulated. In practice, it would be important to check for an association between successive
days.
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Poisson distribution

Suppose events occur over time in such a way that the probability an event occurs
in an interval is proportional to the length of the interval, and that events occur
independently at a rate λ per unit of time. Then the probability of exactly k events
in t units of time is:

P (X = k) =
e−λt(λt)k

k!

where k may take a value 0, 1, 2, . . . The mean and standard deviation of this
distribution are λ and

√
λ, respectively.

A Poisson random variable X can be expressed as X ∼ Pois(λ).
Pois(λ)
Poisson dist.
with rate λ Example 3.35 In New York City, what is the probability that 2 individuals are hos-

pitalized for AMI in seven days, if the rate is known to be 4.4 deaths per day?

From the given information, λ = 4.4, k = 2, and t = 7.

P (X = k) =
e−λt(λt)k

k!

P (X = 2) =
e−4.4×7(4.4× 7)2

2!
= 1.99× 10−11

⊙
Guided Practice 3.36 In New York City, what is the probability that (a) at most
2 individuals are hospitalized for AMI in seven days, (b) at least 3 individuals are
hospitalized for AMI in seven days?24

A rigorous set of conditions for the Poisson distribution is not discussed here. Gen-
erally, the Poisson distribution is used to calculate probabilities for rare events that accu-
mulate over time, such as the occurrence of a disease in a population.

 Example 3.37 For children ages 0 - 14, the incidence rate of acute lymphocytic
leukemia (ALL) was approximately 30 diagnosed cases per million children per year
in 2010. Approximately 20% of the US population of 319,055,000 are in this age
range. What is the expected number of cases of ALL in the US over five years?

The incidence rate for one year can be expressed as 30/1,000,000 = 0.00003; for five
years, the rate is (5)(0.00003) = 0.00015. The number of children age 0-14 in the
population is (0.20)(319,055,000) ≈ 63,811,000.

λ = (relevant population size)(rate per child)

= 63,811,000× 0.00015

= 9,571.5

The expected number of cases over five years is 9,571.5 cases.

24(a) P (X ≤ 2) = P (X = 0)+P (X = 1)+P (X = 2) = e−4.4×7(4.4×7)0
0! + e−4.4×7(4.4×7)1

1! + e−4.4×7(4.4×7)2
2! = 2.12×10−11

(b) P (X ≥ 3) = 1− P (X < 3) = 1− P (X ≤ 2) = 1− 2.12× 10−11 ≈ 1
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3.5 Distributions related to Bernoulli trials (special topic)

The binomial distribution is not the only distribution that can be built from a series of
repeated Bernoulli trials. This section discusses the geometric, negative binomial, and
hypergeometric distributions.

3.5.1 Geometric distribution

The geometric distribution describes the waiting time until one success for a series of
independent Bernoulli random variables, in which the probability of success p remains
constant.

 Example 3.38 Recall that in the Milgram shock experiments, the probability of a
person refusing to give the most severe shock is p = 0.35. Suppose that participants
are tested one at a time until one person refuses; i.e., until the first occurrence of
a successful trial. What are the chances that the first occurrence happens with the
first trial? The second trial? The third?

The probability that the first trial is successful is simply p = 0.35.

If the second trial is the first successful one, then the first one must have been un-
successful. Thus, the probability is given by (0.65)(0.35) = 0.228.

Similarly, the probability that the first success is the third trial: (0.65)(0.65)(0.35) =
0.148.

This can be stated generally. If the first success is on the nth trial, then there are n−1
failures and finally 1 success, which corresponds to the probability (0.65)n−1(0.35).

The geometric distribution from Example 3.38 is shown in Figure 3.21. In general,
the probabilities for a geometric distribution decrease exponentially.
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Figure 3.21: The geometric distribution when the probability of success is
p = 0.35.
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Geometric Distribution

If the probability of a success in one trial is p and the probability of a failure is
1− p, then the probability of finding the first success in the kth trial is given by

P (X = k) = (1− p)k−1p

The mean (i.e. expected value), variance, and standard deviation of this wait time
are given by

µ =
1
p

σ2 =
1− p
p2 σ =

√
1− p
p2

A geometric random variable X can be expressed as X ∼Geom(p).
Geom(p)
Geometric dist.
with p prob. of
success

⊙
Guided Practice 3.39 If individuals were examined until one did not administer
the most severe shock, how many might need to be tested before the first success? 25

 Example 3.40 What is the probability of the first success occurring within the first
4 people?

This is the probability it is the first (k = 1), second (k = 2), third (k = 3), or fourth (k =
4) trial that is the first success, which represent four disjoint outcomes. Compute the
probability of each case and add the separate results:

P (X = 1,2,3, or 4)

= P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)

= (0.65)1−1(0.35) + (0.65)2−1(0.35) + (0.65)3−1(0.35) + (0.65)4−1(0.35)

= 0.82

Alternatively, find the complement of P(X = 0), since the described event is the com-
plement of no success in 4 trials: 1− (0.65)4(0.35)0 = 0.82.

There is a 0.82 probability that the first success occurs within 4 trials.

Note that there are differing conventions for defining the geometric distribution;
while this text uses the definition that the distribution describes the total number of tri-
als including the success, others define the distribution as the number of trials required
before the success is obtained. In R, the latter definition is used.

3.5.2 Negative binomial distribution

The geometric distribution describes the probability of observing the first success on the
kth trial. The negative binomial distribution is more general: it describes the probability
of observing the rth success on the kth trial.

Suppose a research assistant needs to successfully extract RNA from four plant sam-
ples before leaving the lab for the day. Yesterday, it took 6 attempts to attain the fourth
successful extraction. The last extraction must have been a success; that leaves three suc-
cessful extractions and two unsuccessful ones that make up the first five attempts. There
are ten possible sequences, which are shown in 3.22.

25About 1/p = 1/0.35 = 2.86 individuals.
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Extraction Attempt
1 2 3 4 5 6

1 F F
1
S

2
S

3
S

4
S

2 F
1
S F

2
S

3
S

4
S

3 F
1
S

2
S F

3
S

4
S

4 F
1
S

2
S

3
S F

4
S

5
1
S F F

2
S

3
S

4
S

6
1
S F

2
S F

3
S

4
S

7
1
S F

2
S

3
S F

4
S

8
1
S

2
S F F

3
S

4
S

9
1
S

2
S F

3
S F

4
S

10
1
S

2
S

3
S F F

4
S

Table 3.22: The ten possible sequences when the fourth successful extrac-
tion is on the sixth attempt.

⊙
Guided Practice 3.41 Each sequence in Table 3.22 has exactly two failures and
four successes with the last attempt always being a success. If the probability of a
success is p = 0.8, find the probability of the first sequence.26

If the probability of a successful extraction is p = 0.8, what is the probability that it
takes exactly six attempts to reach the fourth successful extraction? As expressed by 3.41,
there are 10 different ways that this event can occur. The probability of the first sequence
was identified in Guided Practice 3.41 as 0.0164, and each of the other sequences have the
same probability. Thus, the total probability is (10)(0.0164) = 0.164.

A general formula for computing a negative binomial probability can be generated
using similar logic as for binomial probability. The probability is comprised of two pieces:
the probability of a single sequence of events, and then the number of possible sequences.
The probability of observing r successes out of k attempts can be expressed as (1−p)k−rpr .
Next, identify the number of possible sequences. In the above example, 10 sequences were
identified by fixing the last observation as a success and looking for ways to arrange the
other observations. In other words, the goal is to arrange r−1 successes in k−1 trials. This
can be expressed as:

(
k − 1
r − 1

)
=

(k − 1)!
(r − 1)! ((k − 1)− (r − 1))!

=
(k − 1)!

(r − 1)! (k − r)!

26The first sequence: 0.2× 0.2× 0.8× 0.8× 0.8× 0.8 = 0.0164.
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Negative binomial distribution

The negative binomial distribution describes the probability of observing the rth

success on the kth trial, for independent trials:

P (X = k) =
(
k − 1
r − 1

)
pr (1− p)k−r (3.42)

where p is the probability an individual trial is a success.
The mean and variance are given by

µ =
r
p

σ2 =
r(1− p)
p2

A negative binomial random variable X can be expressed as X ∼NB(r,p).
NB(r,p)
Neg. Bin. dist.
with k
successes
& p prob. of
success

TIP: Is it negative binomial? Four conditions to check.
(1) The trials are independent.
(2) Each trial outcome can be classified as a success or failure.
(3) The probability of a success (p) is the same for each trial.
(4) The last trial must be a success.

 Example 3.43 Calculate the probability of a fourth successful extraction on the
fifth attempt.

The probability of a single success is p = 0.8, the number of successes is r = 4, and
the number of necessary attempts under this scenario is k = 5.(

k − 1
r − 1

)
pr (1− p)k−r =

4!
3!1!

(0.8)4(0.2) = 4× 0.08192 = 0.328

⊙
Guided Practice 3.44 Assume that each extraction attempt is independent. What
is the probability that the fourth success occurs within 5 attempts?27

TIP: Binomial versus negative binomial
The binomial distribution is used when considering the number of successes for
a fixed number of trials. For negative binomial problems, there is a fixed number
of successes and the goal is to identify the number of trials necessary for a certain
number of successes (note that the last observation must be a success).

27If the fourth success (r = 4) is within five attempts, it either took four or five tries (k = 4 or k = 5):

P (k = 4 OR k = 5) = P (k = 4) + P (k = 5)

=
(
4− 1
4− 1

)
0.84 +

(
5− 1
4− 1

)
(0.8)4(1− 0.8) = 1× 0.41 + 4× 0.082 = 0.41 + 0.33 = 0.74
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⊙
Guided Practice 3.45 On 70% of days, a hospital admits at least one heart attack
patient. On 30% of the days, no heart attack patients are admitted. Identify each
case below as a binomial or negative binomial case, and compute the probability.
(a) What is the probability the hospital will admit a heart attack patient on exactly
three days this week? (b) What is the probability the second day with a heart attack
patient will be the fourth day of the week? (c) What is the probability the fifth day
of next month will be the first day with a heart attack patient?28

In R, the negative binomial distribution is defined as the number of failures that occur
before a target number of successes is reached; i.e., k − r. In this text, the distribution is
defined in terms of the total number of trials required to observe k successes, where the
last trial is necessarily a success.

3.5.3 Hypergeometric distribution

Suppose that a large number of deer live in a forest. Researchers are interested in using
the capture-recapture method to estimate total population size. A number of deer are
captured in an initial sample and marked, then released; at a later time, another sam-
ple of deer are captured, and the number of marked and unmarked deer are recorded.29

An estimate of the total population can be calculated based on the assumption that the
proportion of marked deer in the second sample should equal the proportion of marked
deer in the entire population. For example, if 50 deer were initially captured and marked,
and then 5 out of 40 deer (12.5%) in a second sample are found to be marked, then the
population estimate is 400 deer, since 50 out of 400 is 12.5%.

The capture-recapture method sets up an interesting scenario that requires a new
probability distribution. Let N represent the total number of deer in the forest, m the
number of marked deer captured in the original sample, and n the number of deer in
the second sample. What are the probabilities of obtaining 0,1, ...,m marked deer in the
second sample, if N and m are known?

It is helpful to think in terms of a series of Bernoulli trials, where each capture in the
second sample represents a trial; consider the trial a success if a marked deer is captured,
and a failure if an unmarked deer is captured. If the deer were sampled with replacement,
such that one deer was sampled, checked if it were marked versus unmarked, then re-
leased before another deer was sampled, then the probability of obtaining some number
of marked deer in the second sample would be binomially distributed with probability of
success m/N (out of n trials). The trials are independent, and the probability of success
remains constant across trials.

However, in capture-recapture, the goal is to collect a representative sample such
that the proportion of marked deer in the sample can be used to estimate the total popula-
tion—the sampling is done without replacement. Once a trial occurs and a deer is sampled,
it is not returned to the population before the next trial. The probability of success is not
constant from trial to trial; i.e., these trials are dependent. For example, if a marked deer
has just been sampled, then the probability of sampling a marked deer in the next trial
decreases, since there is one fewer marked deer available.

28In each part, p = 0.7. (a) The number of days is fixed, so this is binomial. The parameters are k = 3 and
n = 7: 0.097. (b) The last "success" (admitting a patient) is fixed to the last day, so apply the negative binomial
distribution. The parameters are r = 2, k = 4: 0.132. (c) This problem is negative binomial with r = 1 and k = 5:
0.006. Note that the negative binomial case when r = 1 is the same as using the geometric distribution.

29It is assumed that enough time has passed so that the marked deer redistribute themselves in the popula-
tion, and that marked and unmarked deer have equal probability of being captured in the second sample.
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Suppose that out of 9 deer, 4 are marked. What is the probability of observing 1
marked deer in a sample of size 3, if the deer are sampled without replacement? First,
consider the total number of ways to draw 3 deer from the population; As shown in Fig-
ure 3.23, samples may consist of 3, 2, 1, or 0 marked deer. There are

(4
3
)

ways to obtain a
sample consisting of 3 marked deer out of the 4 total marked deer. By independence, there
are

(4
2
)(5

1
)

ways to obtain a sample consisting of exactly 2 marked deer and 1 unmarked
deer. In total, there are 84 possible combinations; this quantity is equivalent to

(9
3
)
. Only(4

1
)(5

2
)

= 40 of those combinations represent the desired event of exactly 1 marked deer.
Thus, the probability of observing 1 marked deer in a sample of size 3, under sampling
without replacement, equals 40/84 = 0.476.

Figure 3.23: Possible samples of marked and unmarked deer in a sample
n = 3, where m = 4 and N −m = 5. Striped circles represent marked deer,
and empty circles represent unmarked deer.

⊙
Guided Practice 3.46 Suppose that out of 9 deer, 4 are marked. What is the prob-
ability of observing 1 marked deer in a sample of size 3, if the deer are sampled with
replacement?30

Hypergeometric distribution

The hypergeometric distribution describes the probability of observing k suc-
cesses in a sample of size n, from a population of size N , where there are m
successes, and individuals are sampled without replacement:

P (X = k) =
(m
k

)(N−m
n−k

)(N
n

)
Let p =m/N , the probability of success. The mean and variance are given by

µ = np σ2 = np(1− p)
N −n
N − 1

A hypergeometric random variable X can be written as X ∼HGeom(m,N −m,n).

30Let X represent the number of marked deer in the sample of size 3. If the deer are sampled with replace-
ment, X ∼ Bin(3,4/9), and P (X = 1) =

(3
1
)
(4/9)1(5/9)2 = 0.412.
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TIP: Is it hypergeometric? Three conditions to check.
(1) The trials are dependent.
(2) Each trial outcome can be classified as a success or failure.
(3) The probability of a success is different for each trial.

⊙
Guided Practice 3.47 A small clinic would like to draw a random sample of 10
individuals from their patient list of 120, of which 30 patients are smokers. (a)
What is the probability of 6 individuals in the sample being smokers? (b) What is
the probability that at least 2 individuals in the sample smoke?31

31(a) Let X represent the number of smokers in the sample. P (X = 6) =
(30

6
)(90

4
)(120

10
) = 0.013. (b) P (X ≥ 2) =

1− P (X ≤ 1) = 1− P (X = 0)− P (X = 1) = 1−
(30

0
)(90

10
)(120

10
) − (30

1
)(90

9
)(120

10
) = 0.768
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3.6 Distributions for pairs of random variables (special topic)

 Example 3.48 The Association of American Medical Colleges (AAMC) introduced
a new version of the Medical College Admission Test (MCAT) in the spring of 2015.
Data from the scores were recently released by AAMC.32 The test consists of 4 com-
ponents: chemical and physical foundations of biological systems; critical analysis
and reasoning skills; biological and biochemical foundations of living systems; psy-
chological, social and biological foundations of behavior. The overall score is the
sum of the individual component scores. The grading for each of the four compo-
nents is scaled so that the mean score is 125. The means and standard deviations for
the four components and the total scores for the population taking the exam in May
2015 exam are shown in table 3.24.

Show that the standard deviation in the table for the total score does not agree with
that obtained under the assumption of independence.

Component Mean Standard Deviation
Chem. Phys. Found. 125 3.0
Crit. Analysis 125 3.0
Living Systems 125 3.0
Found. Behavior 125 3.1
Total Score 500 10.6

Table 3.24: Means and Standard Deviations for MCAT Scores

The variance of each component of the score is the square of each standard deviation.
Under the assumption of independence, the variance of the total score would be

Var(Total Score) = 3.02 + 3.02 + 3.02 + 3.12

= 36.61,

so the standard deviation is 6.05, which is less than 10.6.

The summary MCAT score is more variable than implied by the formula for comput-
ing the standard deviation for sums of random variables because the component scores are
not independent. Instead, the component scores are correlated—individuals scoring well
on one component of the exam are likely to score well on other parts. When two random
variables tend to vary together, they are called correlated random variables. There are
many examples of correlated random variables, such as height and weight in a population
of individuals, or the gestational age and birth weight of newborns.

When two random variables X and Y are correlated:

Variance(X +Y ) = Variance(X) + Variance(Y ) + 2σXσYCorrelation(X,Y ) (3.49)

Variance(X −Y ) = Variance(X) + Variance(Y )− 2σXσYCorrelation(X,Y ) (3.50)

The standard deviation for the sum or difference will be the square root of the vari-
ance.

32https://www.aamc.org/students/download/434504/data/percentilenewmcat.pdf
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Correlation between random variables is similar to correlation between pairs of ob-
servations in a dataset, with some important differences. Calculating a correlation r in a
dataset was introduced in Section 1.6.1 and uses the formula:

r =
1

n− 1

n∑
i=1

(
xi − x
sx

)(
yi − y
sy

)
(3.51)

The correlation coefficient r is an average of products, with each term in the product
measuring the distance between x and its mean x or y and its mean y, after the distances
have been scaled by respective standard deviations.

When two random variables tend to increase or decrease together, they are positively
correlated, just as two measurements in a dataset that tend to increase or decrease to-
gether. Individuals who take the MCAT exam tend to do well (or poorly) on each of the
components, so the component scores are positively correlated. As a result, total scores
have more variability than the calculation assuming independence implies.

The compact formula for the correlation between two random variables X and Y uses
the same idea:

ρX,Y = E
(
X −µx
σX

)(
Y −µY
σY

)
, (3.52)

where ρX,Y is the correlation between the two variables, and µX ,µY , σX ,σY are the re-
spective means and standard deviations for X and Y . Just as with the mean of a random
variable, the expectation in the formula for correlation is a weighted sum of products,
with each term weighted by the probability of values for the pair (X,Y ). Equation 3.52
is useful for understanding the analogy between correlation of random variables and cor-
relation of observations in a dataset, but it cannot be used to calculate ρX,Y without the
probability weights. The weights come from the joint distribution of the pair of variables
(X,Y ). Joint probabilities were discussed in section 2.2.1.

Joint distribution

The joint distribution for a pair of random variables is the collection of proba-
bilities

p(xi , yj ) = P (X = xi and Y = yj )

for all pairs of values (xi , yj ) for the pair of random variables (X,Y ).

Joint distributions quickly become complicated. If X and Y have k1 and k2 possible
values respectively, there will be (k1)(k2) possible (x,y) pairs. This is unlike pairs of values
(x,y) observed in a dataset, where each observed value of x is usually paired with only
one value of y. A joint distribution is often best displayed as a table of probabilities, with
(k1)(k2) entries. Table 3.25 shows the general form of the table for the joint distribution of
two discrete distributions.

In this case, ρX,Y will be given by

ρX,Y =
∑
i

∑
j

p(i, j)
(xi −µX )

sd(X)

(yj −µY )

sd(Y )
(3.53)

The double summation adds up terms over all combinations of the indices i and j.
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Table 3.25: Table for a joint distribution. Entries are probabilities for pairs
(xi , yj )

Values of Y
Values of X y1 y2 · · · yk2

x1 p(x1, y1) p(x1, y2) · · · p(x1, yk2
)

x2 p(x2, y1) p(x2, y2) · · · p(x2, yk2
)

... · · · · · · · · · · · ·
xk1

p(xk1
, y1) p(xk1

, y2) · · · p(xk1
, yk2

)

Previously, the calculation of variability in health care costs for an employee and her
partner relied on the assumption that the number of health episodes between the two are
independent random variables. It could be reasonable to assume that the health status
of one person gives no information about the other’s health, given that the two are not
related and were not previously living together. However, correlation between random
variables can be subtle. For example, couples are often attracted to each other because
of common interests or lifestyles, which suggests that health status may not actually be
independent.

Might the health care costs for the employee and her domestic partner be correlated?
To start, examine the joint distribution of costs by making a table of all possible combina-
tions of costs for the last 10 years (these costs were previously calculated in Example 3.1.3
and Guided Practice 3.7). Entries in the table are probabilities of pairs of annual costs.
For example, the entry 0.25 in the second row and second column of Table 3.26 indicates
that in approximately 25% of the last 10 years, the employee paid $1,008 in costs and her
partner paid $988.

Partner costs, Y
Employee costs, X $968 $988

$968 0.18 0.12
$1,008 0.15 0.25
$1,028 0.04 0.16
$1,108 0.03 0.07

Table 3.26: Joint distribution of health care costs.

When two variables X and Y have a joint distribution, the marginal distribution of
X is the collection of probabilities for X when Y is ignored. If X represents employee
costs and Y represents partner costs, the event (X = $968) consists of the two disjoint
events (X = $968,Y = $968) and (X = $968,Y = $988), so P (X = $968) = 0.18 + 0.12 =
0.30, the sum of the first row of the table. The row sums are the values of the marginal
distribution of X, while the column sums are the values of the marginal distributions of
Y . The marginal distributions of X and Y are shown in Table 3.27, along with the joint
distribution of X and Y .

 Example 3.54 Compute the correlation between annual health care costs for the
employee and her partner.

As calculated previously, E(X) = $1010, Var(X) = 1556, E(Y ) = $980, and Var(Y ) =
96. Thus, SD(X) = $39.45 and SD(Y ) = $9.80.
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Partner Costs, Y
Employee costs, X $968 $988 Marg. Dist., X

$968 0.18 0.12 0.30
$1,008 0.15 0.25 0.40
$1,028 0.04 0.16 0.20
$1,108 0.03 0.07 0.10

Marg. Dist., Y 0.40 0.60 1.00

Table 3.27: Joint and Marginal Distributions of Health Care Costs

The calculation of the correlation between the employee and partner costs uses a
specific form of Equation 3.52—the expectation of the cross product terms is calcu-
lated using the probabilities for the joint distribution of X and Y :

ρX,Y = p(x1, y1)
(x1 −µX )

sd(X)
(y1 −µY )

sd(Y )
+ p(x1, y2)

(x1 −µX )
sd(X)

(y2 −µY )
sd(Y )

+ · · ·+ p(x4, y1)
(x4 −µX )

sd(X)
(y1 −µY )

sd(Y )
+ p(x4, y2)

(x4 −µX )
sd(X)

(y2 −µY )
sd(Y )

= (0.18)
(968− 1010)

39.45
(968− 980)

9.8
+ (0.12)

(968− 1010)
39.45

(988− 980)
9.8

+ · · ·+ (0.03)
(1108− 1010)

39.45
(9.68− 980)

9.8
+ (0.07)

(1108− 1010)
39.45

(988− 980)
9.8

= −.80

Somewhat surprisingly, the correlation between annual health care costs for these
two individuals is negative, emphasizing the importance of checking a seemingly
reasonable assumption (positive correlation between two individuals planning to
live together) with a calculation.

 Example 3.55 Calculate the standard deviation of the sum of the health care costs
for the couple.

This calculation uses Equation 3.49 to calculate the variance of the sum. The stan-
dard deviation will be the square root of the variance.

Var(X +Y ) = Var(X) + Var(Y ) + 2σXσY ρX,Y
= (1556 + 96) + (2)(39.45)(9.80)(−0.90)

= 956.10.

The standard deviation is
√

956.10 = $30.92

Just as marginal and joint probabilities are used to calculate conditional probabili-
ties, joint and marginal distributions can be used to obtain conditional distributions. If
information is observed about the value of one of the correlated random variables, such as
X, then this information can be used to obtain an updated distribution for Y ; unlike the
marginal distribution of Y , the conditional distribution of Y |X accounts for information
from X.
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Conditional distribution

The conditional distribution for a pair of random variables is the collection of
probabilities

P (Y = yj |X = xi) =
P (Y = yj and X = xi)

P (X = xj )

for all pairs of values (xi , yj ) for the pair of random variables (X,Y ).

 Example 3.56 If it is known that the employee’s annual health care cost is $968,
what is the conditional distribution of the partner’s annual health care cost?

Note that there is a different conditional distribution of Y for every possible value
of X; this problem specifically asks for the conditional distribution of Y given that
X = $968.

P (Y = $968|X = $968) =
P (Y = $968 and X = $968)

P (X = $968)
=

0.18
0.30

= 0.60

P (Y = $988|X = $968) =
P (Y = $988 and X = $968)

P (X = $968)
=

0.12
0.30

= 0.40

With the knowledge that the employee’s annual health care cost is $968, there is a
probability of 0.60 that the partner’s cost is $968 and 0.40 that the partner’s cost is
$988.



164 CHAPTER 3. DISTRIBUTIONS OF RANDOM VARIABLES

3.7 Notes

Thinking in terms of random variables and distributions of probabilities makes it easier
to describe all possible outcomes of an experiment or process of interest, versus only con-
sidering probabilities on the scale of individual outcomes or sets of outcomes. Several of
the fundamental concepts of probability can naturally be extended to probability distri-
butions. For example, the process of obtaining a conditional distribution is analogous to
the one for calculating a conditional probability.

Many processes can be modeled using a specific named distribution. The statistical
techniques discussed in later chapters, such as hypothesis testing and regression, are often
based on particular distributional assumptions. In particular, many methods rely on the
assumption that data are normally distributed.

The discussion of random variables and their distribution provided in this chapter
only represents an introduction to the topic. In this text, properties of random variables
such as expected value or correlation are presented in the context of discrete random
variables; these concepts are also applicable to continuous random variables. A course
in probability theory will cover additional named distributions as well as more advanced
methods for working with distributions.

Lab 1 introduces the general notion of a random variable and its distribution using
a simulation, then discusses the binomial distribution. Lab 2 discusses the normal distri-
bution and working with normal probabilities, as well as the Poisson distribution. Lab 3
covers the geometric, negative binomial, and hypergeometric distributions. All three labs
include practice problems that illustrate the use of R functions for probability distribu-
tions and introduce additional features of the R programming language.
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3.8 Exercises

3.8.1 Random variables
3.1 Gull clutch size. Large black-tailed gulls usually lay one to three eggs, and rarely have a
fourth egg clutch. It is thought that clutch sizes are effectively limited by how effectively parents
can incubate their eggs. Suppose that on average, gulls have a 25% of laying 1 egg, 40% of laying 2
eggs, 30% chance of laying 3 eggs, and 5% chance of laying 4 eggs.

(a) Calculate the expected number of eggs laid by a random sample of 100 gulls.
(b) Calculate the standard deviation of the number of eggs laid by a random sample of 100 gulls.

3.2 Hearts win. In a card game, the player starts with a well- shuffled full deck and draw 3 cards
without replacement. If the player draw 3 hearts, they win $50. If they draw 3 black cards, they win
$25. For any other draws, nothing is won.

(a) Create a probability model for the amount of money that can be won playing this game, and
find the expected winnings. Also, compute the standard deviation of this distribution.

(b) If the game costs $5 to play, what would be the expected value and standard deviation of the
net profit (or loss)?

(c) If the game costs $5 to play, is it advantageous to play this game? Explain.

3.3 Baggage fees. An airline charges the following baggage fees: $25 for the first bag and $35 for
the second. Suppose 54% of passengers have no checked luggage, 34% have one piece of checked
luggage and 12% have two pieces. Suppose that a negligible portion of people check more than two
bags.

(a) Build a probability model, compute the average revenue per passenger, and compute the corre-
sponding standard deviation.

(b) About how much revenue should the airline expect for a flight of 120 passengers? With what
standard deviation? Note any assumptions made and whether they are justified.

3.4 Scooping ice cream. Ice cream usually comes in 1.5 quart boxes (48 fluid ounces), and ice
cream scoops hold about 2 ounces. However, there is some variability in the amount of ice cream
in a box as well as the amount of ice cream scooped out. We represent the amount of ice cream in
the box as X and the amount scooped out as Y . Suppose these random variables have the following
means, standard deviations, and variances:

mean SD variance
X 48 1 1
Y 2 0.25 0.0625

(a) An entire box of ice cream, plus 3 scoops from a second box is served at a party. How much ice
cream do you expect to have been served at this party? What is the standard deviation of the
amount of ice cream served?

(b) How much ice cream would you expect to be left in the box after scooping out one scoop of ice
cream? That is, find the expected value of X −Y . What is the standard deviation of the amount
left in the box?

(c) Using the context of this exercise, explain why we add variances when we subtract one random
variable from another.

3.8.2 Binomial distribution
3.5 Underage drinking, Part I. Data collected by the Substance Abuse and Mental Health Services
Administration (SAMSHA) suggests that 69.7% of 18-20 year olds consumed alcoholic beverages in
2008.33

33webpage:alcohol.
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(a) Suppose a random sample of ten 18-20 year olds in the US is taken. Is the use of the binomial
distribution appropriate for calculating the probability that exactly six consumed alcoholic bev-
erages? Explain.

(b) Calculate the probability that exactly 6 out of 10 randomly sampled 18- 20 year olds consumed
an alcoholic drink.

(c) What is the probability that exactly four out of the ten 18-20 year olds have not consumed an
alcoholic beverage?

(d) What is the probability that at most 2 out of 5 randomly sampled 18-20 year olds have consumed
alcoholic beverages?

(e) What is the probability that at least 1 out of 5 randomly sampled 18-20 year olds have consumed
alcoholic beverages?

3.6 Chickenpox, Part I. The National Vaccine Information Center estimates that 90% of Americans
have had chickenpox by the time they reach adulthood.34

(a) Suppose we take a random sample of 100 American adults. Is the use of the binomial distri-
bution appropriate for calculating the probability that exactly 97 had chickenpox during child-
hood? Explain.

(b) Calculate the probability that exactly 97 out of 100 randomly sampled American adults had
chickenpox during childhood.

(c) What is the probability that exactly 3 out of a new sample of 100 American adults have not had
chickenpox in their childhood?

(d) What is the probability that at least 1 out of 10 randomly sampled American adults have not
had chickenpox?

(e) What is the probability that at most 7 out of 10 randomly sampled American adults have had
chickenpox?

3.7 Donating blood. When patients receive blood transfusions, it is critical that the blood type of
the donor is compatible with the patients, or else an immune system response will be triggered. For
example, a patient with Type O- blood can only receive Type O- blood, but a patient with Type O+
blood can receive either Type O+ or Type O-. Furthermore, if a blood donor and recipient are of the
same ethnic background, the chance of an adverse reaction may be reduced. According to a 10-year
donor database, 0.37 of white, non-Hispanic donors are O+ and 0.08 are O-.

(a) Consider a random sample of 15 white, non-Hispanic donors. Calculate the expected value
of individuals who could be a donor to a patient with Type O+ blood. With what standard
deviation?

(b) What is the probability that 3 or more of the people in this sample could donate blood to a
patient with Type O- blood?

3.8 Hepatitis C. Hepatitis C is spread primarily through contact with the blood of an infected
person, and is nearly always transmitted through needle sharing among intravenous drug users.
Suppose that in a month’s time, an IV drug user has a 30% chance of contracting hepatitis C through
needle sharing. What is the probability that 3 out of 5 IV drug users contract hepatitis C in a month?
Assume that the drug users live in different parts of the country.

3.9 Wolbachia infection. Approximately 12,500 stocks of Drosophila melanogaster flies are kept at
The Bloomington Drosophila Stock Center for research purposes. A 2006 study examined how many
stocks were infected with Wolbachia, an intracellular microbe that can manipulate host reproduc-
tion for its own benefit. About 30% of stocks were identified as infected. Researchers working with
infected stocks should be cautious of the potential confounding effects that Wolbachia infection may
have on experiments. Consider a random sample of 250 stocks.

(a) Calculate the probability that exactly 60 stocks are infected.

34webpage:chickenpox.
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(b) Calculate the probability that at most 60 stocks are infected.
(c) Calculate the probability that at least 80 stocks are infected.
(d) If a researcher wants to make sure that no more than 40% of the stocks used for an experiment

are infected, does it seem reasonable to take a random sample of 250?

3.10 Eye color, Part I. Suppose that two parents with brown eyes carry genes that make it possible
for their children to have brown eyes (probability 0.75), blue eyes (0.125), or green eyes (0.125).

(a) What is the probability that their first child will have green eyes and the second will not?
(b) What is the probability that exactly one of their two children will have green eyes?
(c) If they have six children, what is the probability that exactly two will have green eyes?
(d) If they have six children, what is the probability that at least one will have green eyes?

3.11 Hyponatremia. Hyponatremia (low sodium levels) occurs in a certain proportion of marathon
runners during a race. Suppose that historically, the proportion of runners who develop hypona-
tremia is 0.12. In a certain marathon, there are 200 runners participating.

(a) How many cases of hyponatremia are expected during the marathon?
(b) What is the probability of more than 30 cases of hyponatremia occurring?

3.8.3 Normal distribution
3.12 Area under the curve, Part I. What percent of a standard normal distribution N (µ = 0,σ = 1)
is found in each region? Be sure to draw a graph.

(a) Z < −1.35 (b) Z > 1.48 (c) −0.4 < Z < 1.5 (d) |Z | > 2

3.13 The standard normal distribution. Consider the standard normal distribution with mean
µ = 0 and standard deviation σ = 1.

(a) What is the probability that an outcome Z is greater than 2.60?
(b) What is the probability that Z is less than 1.35?
(c) What is the probability that Z is between -1.70 and 3.10?
(d) What value of Z cuts off the upper 15% of the distribution?
(e) What value of Z marks off the lower 20% of the distribution?

3.14 GRE scores. The Graduate Record Examination (GRE) is a standardized test commonly taken
by graduate school applicants in the United States. The total score is comprised of three compo-
nents: Quantitative Reasoning, Verbal Reasoning, and Analytical Writing. The first two components
are scored from 130 - 170. The mean score for Verbal Reasoning section for all test takers was 151
with a standard deviation of 7, and the mean score for the Quantitative Reasoning was 153 with a
standard deviation of 7.67. Suppose that both distributions are nearly normal.

(a) A student scores 160 on the Verbal Reasoning section and 157 on the Quantitative Reasoning
section. Relative to the scores of other students, which section did the student perform better
on?

(b) Calculate the student’s percentile scores for the two sections. What percent of test takers per-
formed better on the Verbal Reasoning section?

(c) Compute the score of a student who scored in the 80th percentile on the Quantitative Reasoning
section.

(d) Compute the score of a student who scored worse than 70% of the test takers on the Verbal
Reasoning section.

3.15 Triathlon times. In triathlons, it is common for racers to be placed into age and gender
groups. The finishing times of men ages 30-34 has mean of 4,313 seconds with a standard devi-
ation of 583 seconds. The finishing times of the women ages 25-29 has a mean of 5,261 seconds
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with a standard deviation of 807 seconds. The distribution of finishing times for both groups is
approximately normal. Note that a better performance corresponds to a faster finish.

(a) If a man of the 30-34 age group finishes the race in 4,948 seconds, what percent of the triathletes
in the group did he finish faster than?

(b) If a woman of the 25-29 age group finishes the race in 5,513 seconds, what percent of the triath-
letes in the group did she finish faster than?

(c) Calculate the cutoff time for the fastest 5% of athletes in the men’s group.
(d) Calculate the cutoff time for the slowest 10% of athletes in the women’s group.

3.16 Osteoporosis. The World Health Organization defines osteoporosis in young adults as a
measured bone mineral density 2.5 or more standard deviations below the mean for young adults.
Assume that bone mineral density follows a normal distribution in young adults. What percentage
of young adults suffer from osteoporosis according to this criterion?

3.17 LA weather. The average daily high temperature in June in LA is 77◦F with a standard
deviation of 5◦F. Suppose that the temperatures in June closely follow a normal distribution.

(a) What is the probability of observing an 83◦F temperature or higher in LA during a randomly
chosen day in June?

(b) How cold are the coldest 10% of the days during June in LA?

3.18 Clutch volume. A study investigating maternal investment in a frog species found on the
Tibetan Plateau reported data on the volume of egg clutches measured across 11 study sites. The
distribution is roughly normal, with approximate distribution N (882.5,380) mm3.

(a) What is the probability of observing an egg clutch between volume 700-800 mm3?
(b) How large are the largest 5% of egg clutches?

3.19 Glucose levels. Fasting blood glucose levels for normal non-diabetic individuals are normally
distributed in the population, with mean µ = 85 mg/dL and standard deviation σ = 7.5 mg/dL.

(a) What is the probability that a randomly chosen member of the population has a fasting glucose
level higher than 100 mg/dL?

(b) What value of fasting glucose level defines the lower 5th percentile of the distribution?

3.20 Arsenic poisoning. Arsenic blood concentration is normally distributed with mean µ = 3.2
µg/dl and standard deviation σ = 1.5 µg/dl. What range of arsenic blood concentration defines the
middle 95% of this distribution?

3.21 Age at childbirth. In the last decade, the average age of a mother at childbirth is 26.4 years,
with standard deviation 5.8 years. The distribution of age at childbirth is approximately normal.

(a) What proportion of women who give birth are 21 years of age or older?
(b) Giving birth at what age puts a woman in the upper 2.5% of the age distribution?

3.22 Find the SD. Find the standard deviation of the distribution in the following situations.

(a) MENSA is an organization whose members have IQs in the top 2% of the population. IQs are
normally distributed with mean 100, and the minimum IQ score required for admission to
MENSA is 132.

(b) Cholesterol levels for women aged 20 to 34 follow an approximately normal distribution with
mean 185 milligrams per deciliter (mg/dl). Women with cholesterol levels above 220 mg/dl are
considered to have high cholesterol and about 18.5% of women fall into this category.

3.23 SAT scores. SAT scores (out of 2400) are distributed normally with a mean of 1500 and a
standard deviation of 300. Suppose a school council awards a certificate of excellence to all students
who score at least 1900 on the SAT, and suppose we pick one of the recognized students at random.
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What is the probability this student’s score will be at least 2100? (The material covered in Section 2.2
would be useful for this question.)

3.24 Underage drinking, Part II. As first referenced in Exercise 3.5, about 70% of 18-20 year olds
consumed alcoholic beverages in 2008. Consider a random sample of fifty 18-20 year olds.

(a) Of these fifty people, how many would be expected to have consumed alcoholic beverages? With
what standard deviation?

(b) Evaluate the conditions for using the normal approximation to the binomial. What is the prob-
ability that 45 or more people in this sample have consumed alcoholic beverages?

3.25 Chickenpox, Part II. As first referenced in Exercise 3.6, about 90% of American adults had
chickenpox before adulthood. Consider a random sample of 120 American adults.

(a) How many people in this sample would be expected to have had chickenpox in their childhood?
With what standard deviation?

(b) Evaluate the conditions for using the normal approximation to the binomial. What is the prob-
ability that 105 or fewer people in this sample have had chickenpox in their childhood?

3.26 University admissions. Suppose a university announced that it admitted 2,500 students for
the following year’s freshman class. However, the university has dorm room spots for only 1,786
freshman students. If there is a 70% chance that an admitted student will decide to accept the offer
and attend this university, what is the approximate probability that the university will not have
enough dormitory room spots for the freshman class?

3.27 Heights of female college students. The heights of 25 female college students are plotted
below. Do these data appear to follow a normal distribution? Explain your reasoning.
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3.8.4 Poisson distribution
3.28 Computing Poisson probabilities. This is a simple exercise in computing probabilities for a
Poisson random variable. Suppose that X is a Poisson random variable with rate parameter λ = 2.
Calculate P (X = 2), P (X ≤ 2), and P (X ≥ 3).

3.29 Stenographer’s typos. A very skilled court stenographer makes one typographical error
(typo) per hour on average.

(a) What are the mean and the standard deviation of the number of typos this stenographer makes
in an hour?

(b) Calculate the probability that this stenographer makes at most 3 typos in a given hour.
(c) Calculate the probability that this stenographer makes at least 5 typos over 3 hours.

3.30 Osteosarcoma in NYC. Osteosarcoma is a relatively rare type of bone cancer. It occurs most
often in young adults, age 10-19: it is diagnosed in approximately 8 per 1,000,000 individuals per
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year in that age group. In New York City (including all five boroughs), the number of young adults
in this age range is approximately 1,400,000.

(a) What is the expected number of cases of osteosarcoma in NYC in a given year?
(b) What is the probability that 15 or more cases will be diagnosed in a given year?
(c) The largest concentration of young adults in NYC is in the borough of Brooklyn, where the

population in that age range is approximately 450,000. What is the probability of 10 or more
cases in Brooklyn in a given year?

Note: The following two problems are best done using statistical computing software.

3.31 Hemophilia. Hemophilia is a sex-linked bleeding disorder that slows the blood clotting pro-
cess. In severe cases of hemophilia, continued bleeding occurs after minor trauma or even in the
absence of injury. Hemophilia affects 1 in 5,000 male births. In the United States, about 400 males
are born with hemophilia each year; there are approximately 4,000,000 births per year.

(a) What is the probability that at most 380 newborns in a year are born with hemophilia?
(b) What is the probability that 450 or more newborns in a year are born with hemophilia?
(c) Consider a hypothetical country in which there are approximately 1.5 million births per year.

If the incidence rate of hemophilia is equal to that in the US, how many newborns are expected
to have hemophilia in a year, with what standard deviation?

3.32 Opioid overdose. The US Centers for Disease Control (CDC) has been monitoring the rate
of deaths from opioid overdoses for at least the last 15 years. In 2013, the rate of opioid-related
deaths has risen to 6.8 deaths per year per 100,000 non-Hispanic white members. In 2014-2015,
the population of Essex County, MA, was approximately 769,000, of whom 73% are non-Hispanic
white. Assume that incidence rate of opioid deaths in Essex County is the same as the 2013 national
rate.

(a) In 2014, Essex County reported 146 overdose fatalities from opioids. Assume that all of these
deaths occurred in the non-Hispanic white members of the population. What is the probability
of 146 or more such events a year?

(b) What was the observed rate of opioid-related deaths in Essex County in 2014, stated in terms of
deaths per 100,000 non-Hispanic white members of the population?

(c) In 2015, Essex County reported 165 opioid-related deaths in its non-Hispanic white population.
Using the rate from part (b), calculate the probability of 165 or more such events.

3.8.5 Distributions related to Bernoulli trials
3.33 Married women. The 2010 American Community Survey estimates that 47.1% of women
ages 15 years and over are married. Suppose that a random sample of women in this age group are
selected for a research study.35

(a) On average, how many women would need to be sampled in order to select a married woman?
What is the standard deviation?

(b) If the proportion of married women were actually 30%, what would be the new mean and
standard deviation?

(c) Based on the answers to parts (a) and (b), how does decreasing the probability of an event affect
the mean and standard deviation of the wait time until success?

3.34 Donating blood, Part II. Recall from Problem 3.7 that a patient with Type O+ blood can
receive either Type O+ or Type O- blood, while a patient with Type O- blood can only receive Type
O- blood. According to data collected from blood donors, 0.37 of white, non-Hispanic donors are
Type O+ and 0.08 are Type O-. For the following questions, assume that only white, non-Hispanic
donors are being tested.

35marWomenACS.
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(a) On average, how many donors would need to be randomly sampled for a Type O+ donor to be
identified? With what standard deviation?

(b) What is the probability that 4 donors must be sampled to identify a Type O+ donor?
(c) What is the probability that more than 4 donors must be sampled to identify a Type O+ donor?
(d) What is the probability of the first Type O- donor being found within the first 4 people?
(e) On average, how many donors would need to be randomly sampled for a Type O- donor to be

identified? With what standard deviation?
(f) What is the probability that fewer than 4 donors must be tested before a Type O- donor is found?

3.35 Wolbachia infection, Part II. Recall from Problem 3.9 that 30% of the Drosophila stocks at
the BDSC are infected with Wolbachia. Suppose a research assistant randomly samples a stock one
at a time until identifying an infected stock.

(a) Calculate the probability that an infected stock is found within the first 5 stocks sampled.
(b) What is the probability that no more than 5 stocks must be tested before an infected one is

found?
(c) Calculate the probability that at least 3 stocks must be tested for an infected one to be found.

3.36 Playing darts. Calculate the following probabilities and indicate which probability distri-
bution model is appropriate in each case. A very good darts player can hit the direct center of the
board 65% of the time. What is the probability that a player:

(a) hits the bullseye for the 10th time on the 15th try?
(b) hits the bullseye 10 times in 15 tries?
(c) hits the first bullseye on the third try?

3.37 Cilantro preference. Cilantro leaves are widely used in many world cuisines. While some
people enjoy it, others claim that it has a soapy, pungent aroma. A recent study conducted on
participants of European ancestry identified a genetic variant that is associated with soapy-taste
detection. In the initial questionnaire, 1,994 respondents out of 14,604 reported that they thought
cilantro tasted like soap. Suppose that participants are randomly selected one by one.

(a) What is the probability that the first soapy-taste detector is the third person selected?
(b) What is the probability that in a sample of ten people, no more than two are soapy-taste detec-

tors?
(c) What is the probability that three soapy-taste detectors are identified from sampling ten people?
(d) What is the mean and standard deviation of the number of people that must be sampled if the

goal is to identify four soapy-taste detectors?

3.38 Serving in volleyball. A not-so-skilled volleyball player has a 15% chance of making the
serve, which involves hitting the ball so it passes over the net on a trajectory such that it will land
in the opposing team’s court. Suppose that serves are independent of each other.

(a) What is the probability that on the 10th try, the player makes their 3rd successful serve?
(b) Suppose that the player has made two successful serves in nine attempts. What is the probability

that their 10th serve will be successful?
(c) Even though parts (a) and (b) discuss the same scenario, explain the reason for the discrepancy

in probabilities.

3.39 Cilantro preference, Part II. Recall from Problem 3.37 that in a questionnaire, 1,994 respon-
dents out of 14,604 reported that they thought cilantro tasted like soap. Suppose that a random
sample of 15 individuals are selected for further study.

(a) What is the mean and variance of the number of people sampled that are soapy-taste detectors?
(b) What is the probability that 4 of the people sampled are soapy-taste detectors?
(c) What is the probability that at most 2 of the people sampled are soapy-taste detectors?
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(d) Suppose that the 15 individuals were sampled with replacement. What is the probability of
selecting 4 soapy-taste detectors?

(e) Compare the answers from parts (b) and (d). Explain why the answers are essentially the same.

3.40 Dental caries. A study to examine oral health of schoolchildren in Belgium found that of the
4,351 children examined, 44% were caries free (i.e., free of decay, restorations, and missing teeth).
Suppose that children are sampled one by one.

(a) What is the probability that at least three caries free children are identified from sampling seven
children?

(b) What is the probability that the first caries free child is the second one selected?
(c) Suppose that in a single school of 350 children, the incidence rate of caries equals the national

rate. If 10 schoolchildren are selected at random, what is the probability that at most 2 have
caries?

(d) What is the probability that in a sample of 50 children, no more than 15 are caries free?

3.8.6 Distributions for pairs of random variables



Chapter 4

Foundations for inference

Not surprisingly, many studies are now demonstrating the adverse effect of obesity on
health outcomes. A 2017 study conducted by the consortium studying the global burden
of disease estimates that high body mass index (a measure of body fat that adjusts for
height and weight) may account for as many as 4.0 million deaths globally.1 In addition
to the physiologic effects of being overweight, other studies have shown that perceived
weight status (feeling that one is overweight or underweight) may have a significant effect
on self-esteem.2,3

As stated in its mission statement, the United States Centers for Disease Control and
Prevention (US CDC) "serves as the national focus for developing and applying disease
prevention and control, environmental health, and health promotion and health educa-
tion activities designed to improve the health of the people of the United States".4 Since
it is not feasible to measure the health status and outcome of every single US resident, the
CDC estimates features of health from samples taken from the population, via large sur-
veys that are repeated periodically. These surveys include the National Health Interview
Survey (NHIS), the National Health and Nutrition Examination Survey (NHANES), the
Youth Risk Behavior Surveillance System (YRBSS) and the Behavior Risk Factor Surveil-
lance System (BRFSS). In the language of statistics, the average weight of all US adults is
a population parameter; the mean weight in a sample or survey is an estimate of pop-
ulation average weight. The principles of statistical inference provide not only estimates
of population parameters, but also measures of uncertainty that account for the fact that
different random samples will produce different estimates because of the variability of
random sampling; i.e., two different random samples will not include exactly the same
people.

This chapter introduces the important ideas in drawing estimates from samples by
discussing methods of inference for a population mean, µ, including three widely used
tools: point estimates for a population mean, interval estimates that include both a point
estimate and a margin of error, and a method for testing scientific hypotheses about µ. The
concepts used in this chapter will appear throughout the rest of the book, which discusses
inference for other settings. While particular equations or formulas may change to reflect
the details of a problem at hand, the fundamental ideas will not.

1DOI: 10.1056/NEJMoa1614362
2J Ment Health Policy Econ. 2010 Jun;13(2):53-63
3DOI: 10.1186/1471-2458-7-80
4https://www.cdc.gov/maso/pdf/cdcmiss.pdf
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The BRFSS was established in 1984 in 15 states to collect data using telephone in-
terviews about health-related risk behaviors, chronic health conditions, and the use of
preventive services. It now collects data in all 50 states and the District of Columbia
from more than 400,000 interviews conducted each year. The data set cdc contains a
small number of variables from a random sample of 20,000 responses from the 264,684
interviews from the BRFSS conducted in the year 2000. Part of this dataset is shown in
Table 4.1, with the variables described in Table 4.2.5

case age gender weight wtdesire height genhlth
1 1 77 m 175 175 70 good
2 2 33 f 125 115 64 good
3 3 49 f 105 105 60 good

20000 20000 83 m 170 165 69 good

Table 4.1: Four cases from the cdc dataset.

Variable Variable definition.
case Case number in the dataset, ranging from 1 to 20,000.
age Age in years.
gender A factor variable, with levels m for male, f for female.
weight Weight in pounds.
wtdesire Weight that the respondent wishes to be, in pounds.
height Height in inches.
genhlth A factor variable describing general health status, with levels excellent, very

good, good, fair, poor.

Table 4.2: Some variables and their descriptions for the cdc dataset.

Few studies are as large as the original BRFSS dataset (more than 250,000 cases);
in fact, few are as large as the 20,000 cases in the dataset cdc. The dataset cdc is large
enough that estimates calculated from cdc can be thought of as essentially equivalent
to the population characteristics of the entire US adult population. This chapter uses a
random sample of 60 cases from cdc, stored as cdc.samp, to illustrate the effect of sampling
variability and the ideas behind inference. In other words, suppose that cdc represents
the population, and that cdc.samp is a sample from the population; the goal is to estimate
characteristics of the population of 20,000 using only the data from the 60 individuals in
the sample.

5With small modifications (character strings re-coded as factors), the data appears in this text as it does in an
OpenIntro lab. http://htmlpreview.github.io/?https://github.com/andrewpbray/oiLabs-base-R/blob/master/
intro_to_data/intro_to_data.html

http://htmlpreview.github.io/?https://github.com/andrewpbray/oiLabs-base-R/blob/master/intro_to_data/intro_to_data.html
http://htmlpreview.github.io/?https://github.com/andrewpbray/oiLabs-base-R/blob/master/intro_to_data/intro_to_data.html
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4.1 Variability in estimates

A natural way to estimate features of the population, such as the population mean weight,
is to use the corresponding summary statistic calculated from the sample.6 The mean
weight in the sample of 60 adults in cdc.samp is xweight = 173.3 lbs; this sample mean
is a point estimate of the population mean, µweight. If a different random sample of 60
individuals were taken from cdc, the new sample mean would likely be different as a
result of sampling variation. While estimates generally vary from one sample to another,
the population mean is a fixed value.⊙

Guided Practice 4.1 How would one estimate the difference in average weight
between men and women? Given that xmen = 185.1 lbs and xwomen = 162.3 lbs, what
is a good point estimate for the population difference?7

Point estimates become more accurate with increasing sample size. Figure 4.3 shows
the sample mean weight calculated for random samples drawn from cdc, where sample
size increases by 1 for each draw until sample size equals 500. The red dashed horizontal
line in the figure is drawn at the average weight of all adults in cdc, 169.7 lbs, which
represents the population mean weight.8
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Figure 4.3: The mean weight computed for a random sample from cdc,
increasing sample size one at a time until n = 500. The sample mean
approaches the population mean (i.e., mean weight in cdc) as sample size
increases.

Note how a sample size around 50 may produce a sample mean that is as much as 10
lbs higher or lower than the population mean. As sample size increases, the fluctuations
around the population mean decrease; in other words, as sample size increases, the sample
mean becomes less variable and provides a more reliable estimate of the population mean.

6Other population parameters, such as population median or population standard deviation, can also esti-
mated using sample versions.

7Given that xmen = 185.1 lbs and xwomen = 162.3 lbs, the difference of the two sample means, 185.1−162.3 =
22.8lbs, is a point estimate of the difference. The data in the random sample suggests that adult males are, on
average, about 23 lbs heavier than adult females.

8It is not exactly the mean weight of all US adults, but will be very close since cdc is so large.
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4.1.1 The sampling distribution for the mean

The sample mean weight calculated from cdc.samp is 173.3 lbs. Another random sample
of 60 participants might produce a different value of x, such as 169.5 lbs; repeated random
sampling could result in additional different values, perhaps 172.1 lbs, 168.5 lbs, and so
on. Each sample mean x can be thought of as a single observation from a random variable
X. The distribution of X is called the sampling distribution of the sample mean, and
has its own mean and standard deviation like the random variables discussed in Chapter
3. The concept of a sampling distribution can be illustrated by taking repeated random
samples from cdc. Figure 4.4 shows a histogram of sample means from 1,000 random
samples of size 60 from cdc. The histogram provides an approximation of the theoretical
sampling distribution of X for samples of size 60.
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Figure 4.4: A histogram of 1000 sample means for weight among US
adults, where the samples are of size n = 60.

Sampling distribution

The sampling distribution is the distribution of the point estimates based on sam-
ples of a fixed size from a certain population. It is useful to think of a particular
point estimate as being drawn from a sampling distribution.

Since the complete sampling distribution consists of means for all possible samples
of size 60, drawing a much larger number of samples provides a more accurate view of the
distribution; the left panel of Figure 4.5 shows the distribution calculated from 100,000
sample means.

A normal probability plot of these sample means is shown in the right panel of Fig-
ure 4.5. All of the points closely fall around a straight line, implying that the distribution
of sample means is nearly normal (see Section 3.3). This result follows from the Central
Limit Theorem.
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Figure 4.5: The left panel shows a histogram of the sample means for
100,000 random samples. The right panel shows a normal probability
plot of those sample means.

Central Limit Theorem, informal description

If a sample consists of at least 30 independent observations and the data are not
strongly skewed, then the distribution of the sample mean is well approximated
by a normal model.

The sampling distribution for the mean is unimodal and symmetric around the mean
of the random variable X. Statistical theory can be used to show that the mean of the
sampling distribution for X is exactly equal to the population mean µ.

However, in almost any study, conclusions about a population parameter must be
drawn from the data collected from a single sample. The sampling distribution of X is a
theoretical concept, since obtaining repeated samples by conducting a study many times
is not possible. In other words, it is not feasible to calculate the population mean µ by
finding the mean of the sampling distribution for X.

4.1.2 Standard error of the mean

The standard error (SE) of the sample mean measures the sample-to-sample variability SE
standard
errorof X, the extent to which values of the repeated sample means oscillate around the popu-

lation mean. The theoretical standard error of the sample mean is calculated by dividing
the population standard deviation (σx) by the square root of the sample size n. Since the
population standard deviation σ is typically unknown, the sample standard deviation s is
often used in the definition of a standard error; s is a reasonably good estimate of σ . If X
represents the sample mean weight, its standard error (denoted by SE) is

SEX =
sx√
n

=
49.04
√

60
= 6.33.

This estimate tends to be sufficiently good when the sample size is at least 30 and
the population distribution is not strongly skewed. In the case of skewed distributions, a
larger sample size is necessary.
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The probability tools of Section 3.1 can be used to derive the formula σX = σx/
√
n,

but the derivation is not shown here. Larger sample sizes produce sampling distributions
that have lower variability. Increasing the sample size causes the distribution of X to be
clustered more tightly around the population mean µ, allowing for more accurate esti-
mates of µ from a single sample, as shown in Figure 4.6. When sample size is large, it is
more likely that any particular sample will have a mean close to the population mean.
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Figure 4.6: (a) Reproduced from Figure 4.4, an approximation of the sam-
pling distribution of X with n = 60. (b) An approximation of the sampling
distribution of X with n = 200.

The standard error (SE) of the sample mean

Given n independent observations from a population with standard deviation σ ,
the standard error of the sample mean is equal to

SEX =
sx√
n
.

This is an accurate estimate of the theoretical standard deviation of X when the
sample size is at least 30 and the population distribution is not strongly skewed.
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Summary: Point estimate terminology

– The population mean and standard deviation are denoted by µ and σ .

– The sample mean and standard deviation are denoted by x and s.

– The distribution of the random variable X refers to the collection of sample
means if multiple samples of the same size were repeatedly drawn from a
population.

– The mean of the random variable X equals the population mean µ. In the
notation of Chapter 3, µX = E(X) = µ.

– The standard deviation of X (σX ) is called the standard error (SE) of the
sample mean.

– The theoretical standard error of the sample mean, as calculated from a
single sample of size n, is equal to σ√

n
. The standard error is abbreviated by

SE and is usually estimated by using s, the sample standard deviation, such
that SE = s√

n
.
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4.2 Confidence intervals

4.2.1 Interval estimates for a population parameter

While a point estimate consists of a single value, an interval estimate provides a plausible
range of values for a parameter. When estimating a population mean µ, a confidence
interval for µ has the general form

(x −m, x+m) = x ±m,

where m is the margin of error. Intervals that have this form are called two-sided con-
fidence intervals because they provide both lower and upper bounds, x −m and x +m,
respectively. One-sided sided intervals are discussed in Section 4.2.3.

The standard error of the sample mean is the standard deviation of its distribution;
additionally, the distribution of sample means is nearly normal and centered at µ. Under
the normal model, the sample mean x will be within 1.96 standard errors (i.e., standard
deviations) of the population mean µ approximately 95% of the time.9 Thus, if an interval
is constructed that spans 1.96 standard errors from the point estimate in either direction,
a data analyst can be 95% confident that the interval

x ± 1.96× SE (4.2)

contains the population mean. The value 95% is an approximation, accurate when
the sampling distribution for the sample mean is close to a normal distribution. This
assumption holds when the sample size is sufficiently large (guidelines for ‘sufficiently
large’ are given in Section 4.4).
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Figure 4.7: Twenty-five samples of size n = 60 were taken from cdc.
For each sample, a 95% confidence interval was calculated for the pop-
ulation average adult weight. Only 1 of these 25 intervals did not contain
the population mean, µ = 169.7 lbs.

The phrase "95% confident" has a subtle interpretation: if many samples were drawn
from a population, and a confidence interval is calculated from each one using Equa-
tion 4.2, about 95% of those intervals would contain the population mean µ. Figure 4.7

9In other words, the Z-score of 1.96 is associated with 2.5% area to the right (and Z = -1.96 has 2.5% area to
the left); this can be found on normal probability tables or from using statistical software.
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illustrates this process with 25 samples taken from cdc. Of the 25 samples, 24 contain the
mean weight in cdc of 169.7 lbs, while one does not.

Just as with the sampling distribution of the sample mean, the interpretation of a
confidence interval relies on the abstract construct of repeated sampling. A data analyst,
who can only observe one sample, does not know whether the population mean lies within
the single interval calculated. The uncertainty is due to random sampling—by chance, it
is possible to select a sample from the population that has unusually high (or low) values,
resulting in a sample mean x that is relatively far from µ, and by extension, a confidence
interval that does not contain µ.

 Example 4.3 The sample mean adult weight from the 60 observations in cdc.samp
is xweight = 173.3 lbs, and the standard deviation is sweight = 49.04 lbs. Use Equa-
tion 4.2 to calculate an approximate 95% confidence interval for the average adult
weight in the US population.

The standard error for the sample mean is SEx = 49.04√
60

= 6.33 lbs. The 95% confi-
dence interval is

xweight ± 1.96SEx = 173.3± (1.96)(6.33) = (160.89,185.71) lbs.

The data support the conclusion that, with 95% confidence, the average weight of
US adults is between approximately 161 and 186 lbs.

Figure 4.5 visually shows that the sampling distribution is nearly normal. To assess
normality of the sampling distribution without repeated sampling, it is necessary
to check whether the data are skewed. Although Figure 4.8 shows some skewing,
the sample size is large enough that the confidence interval should be reasonably
accurate.
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Figure 4.8: Histogram of weight in cdc.samp

⊙
Guided Practice 4.4 There are 31 females in the sample of 60 US adults, and the
average and standard deviation of weight for these individuals are 162.3 lbs and
57.74 lbs, respectively. A histogram of weight for the 31 females is shown in Fig-
ure 4.9. Calculate an approximate 95% confidence interval for the average weight
of US females. Is the interval likely to be accurate?10

10Applying Equation 4.2: 162.3 ± (1.96)(57.73/
√

31)→ (149.85,174.67). The usual interpretation would be
that a data analyst can be about 95% confident the average weight of US females is between approximately 150
and 175 lbs. However, the histogram of female weights shows substantial right skewing, and several females
with recorded weights larger than 200 lbs. The confidence interval is probably not accurate; a larger sample
should be collected in order for the sampling distribution of the mean to be approximately normal. Chapter 5
will introduce the t-distribution, which is more reliable with small sample sizes than the z-distribution.
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Figure 4.9: Histogram of weight for the 31 females in cdc.samp.

4.2.2 Changing the confidence level

Ninety-five percent confidence intervals are the most commonly used interval estimates,
but intervals with confidence levels other than 95% can also be constructed. The general
formula for a confidence interval (for the population mean µ) is given by

x ± z? × SE, (4.5)

where z? is chosen according to the confidence level. When calculating a 95% confidence
level, z? is 1.96, since the area within 1.96 standard deviations of the mean captures 95%
of the distribution.

To construct a 99% confidence interval, z? must be chosen such that 99% of the nor-
mal curve is captured between -z? and z? .

 Example 4.6 Let Y be a normally distributed random variable. Ninety-nine per-
cent of the time, Y will be within how many standard deviations of the mean?

This is equivalent to the z-score with 0.005 area to the right of z and 0.005 to the
left of −z. In the normal probability table, this is the z-value that with 0.005 area
to its right and 0.995 area to its left. The closest two values are 2.57 and 2.58; for
convenience, round up to 2.58. The unobserved random variable Y will be within
2.58 standard deviations of µ 99% of the time, as shown in Figure 4.10.

A 99% confidence interval will have the form

x ± 2.58× SE, (4.7)

and will consequently be wider than a 95% interval for µ calculated from the same data,
since the margin of error m is larger.

 Example 4.8 Create a 99% confidence interval for the average adult weight in the
US population using the data in cdc.samp. The point estimate is xweight = 173.3 and
the standard error is SEx = 6.33.

Apply the 99% confidence interval formula: xweight ± 2.58×SEX → (156.97,189.63).
A data analyst can be 99% confident that the average adult weight is between 156.97
and 189.63 lbs.

The 95% confidence interval for the average adult weight is (160.89, 185.71) lbs. In-
creasing the confidence level to 99% results in the interval (156.97, 189.63) lbs; this wider
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standard deviations from the mean

−3 −2 −1 0 1 2 3

95%, extends −1.96 to 1.96

99%, extends −2.58 to 2.58

Figure 4.10: The area between -z? and z? increases as |z? | becomes larger.
If the confidence level is 99%, z? is chosen such that 99% of the normal
curve is between -z? and z? , which corresponds to 0.5% in the lower tail
and 0.5% in the upper tail: z? = 2.58.

interval is more likely to contain the population mean µ. However, increasing the con-
fidence level comes at a cost: a wider interval is less informative in providing a precise
estimate of the population mean. Consider the extreme: to be "100% confident" that an in-
terval contains µ, the interval must span all possible values of µ. For example, with 100%
confidence the average weight is between 0 and 1000 lbs; while this interval necessarily
contains µ, it has no interpretive value and is completely uninformative.11

Decreasing the confidence level produces a narrower interval; the estimate is more
precise, but also more prone to inaccuracy. For example, consider a 50% confidence in-
terval for average adult weight using cdc.samp: the z? value is 0.67, and the confidence
interval is (169.06, 177.54) lbs. This interval provides a more precise estimate of the pop-
ulation average weight µ than the 99% or 95% confidence intervals, but the increased
precision comes with less confidence about whether the interval contains µ. In a theoret-
ical setting of repeated sampling, if 100 50% confidence intervals were computed, only
half could be expected to contain µ.

The choice of confidence level is a trade-off between obtaining a precise estimate
and calculating an interval that can be reasonably expected to contain the population
parameter. In published literature, the most used confidence intervals are the 90%, 95%,
and 99%.

4.2.3 One-sided confidence intervals

One-sided confidence intervals for a population mean provide either a lower bound or an
upper bound, but not both. One-sided confidence intervals have the form

(x −m,∞) or (−∞,x+m).

11Strictly speaking, to be 100% confident requires an interval spanning all positive numbers; 1000 lbs has
been arbitrarily chosen as an upper limit for human weight.
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While the margin of error m for a one-sided interval is still calculated from the stan-
dard error of x and a z? value, the choice of z? is a different than for a two-sided interval.
For example, the intent of a 95% one-sided upper confidence interval is to provide an
upper bound m such that a data analyst can be 95% confident that a population mean µ is
less than x+m. The z? value must correspond to the point on the normal distribution that
has 0.05 area in the right tail, z? = 1.645.12 A one-sided upper 95% confidence interval
will have the form

(−∞,x+ 1.645× SE).

 Example 4.9 Calculate a lower 95% confidence interval for the population average
adult weight in the United States. In the sample of 60 adults in cdc.samp, the mean
and standard error are x = 173.3 and SE = 6.33 days.

The lower bound is 173.3−(1.645×6.33) = 163.89. The lower 95% interval (163.89,∞)
suggests that one can be 95% confident that the population average adult weight is
at least 163.9 lbs.⊙
Guided Practice 4.10 Calculate an upper 99% confidence interval for the popu-
lation average adult weight in the United States. The mean and standard error for
weight in cdc.samp are x = 173.3 and SE = 6.33 days.13

4.2.4 Interpreting confidence intervals

The correct interpretation of an XX% confidence interval is, "We are XX% confident that
the population parameter is between . . . " While it may be tempting to say that a con-
fidence interval captures the population parameter with a certain probability, this is a
common error. The confidence level only quantifies how plausible it is that the parame-
ter is within the interval; there is no probability associated with whether a parameter is
contained in a specific confidence interval. The confidence coefficient reflects the nature
of a procedure that is correct XX% of the time, given that the assumptions behind the
calculations are true.

The conditions regarding the validity of the normal approximation can be checked
using the numerical and graphical summaries discussed in Chapter 1. However, the con-
dition that data should be from a random sample is sometimes overlooked. If the data are
not from a random sample, then the confidence interval no longer has interpretive value,
since there is no population mean to which the confidence interval applies. For example,
while only simple arithmetic is needed to calculate a confidence interval for BMI from the
famuss dataset in Chapter 1, the participants in the study are almost certainly not a ran-
dom sample from some population; thus, a confidence interval should not be calculated
in this setting.

 Example 4.11 Body mass index (BMI) is one measure of body weight that adjusts
for height. The National Health and Nutrition Examination Survey (NHANES) con-
sists of a set of surveys and measurements conducted by the US CDC to assess

12Previously, with a two-sided interval, 1.96 was chosen in order to have a total area of 0.05 from both the
right and left tails.

13For a one-sided 99% confidence interval, the z? value corresponds to the point with 0.01 area in the right
tail, z? = 2.326. Thus, the upper bound for the interval is 173.3+(2.326×6.33) = 188.024. The upper 99% interval
(−∞,188.024) suggests that one can be 99% confident that the population average adult weight is at most 188.0
lbs.



4.2. CONFIDENCE INTERVALS 185

the health and nutritional status of adults and children in the United States. The
dataset nhanes.samp contains 76 variables and is a random sample of 200 individu-
als from the measurements collected in the years 2009-2010 and 2012-2013.14 Use
nhanes.samp to calculate a 95% confidence interval for adult BMI in the US popula-
tion, and assess whether the data suggest Americans tend to be overweight.
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Figure 4.11: The distribution of BMI for the 135 adults in nhanes.samp.

In the random sample of 200 participants, BMI is available for all 135 of the par-
ticipants that are 21 years of age or older. As shown in the histogram (Figure 4.11),
the data are right-skewed, with one large outlier. The outlier corresponds to an im-
plausibly extreme BMI value of 69.0; since it seems likely that the value represents
an error from when the data was recorded, this data point is excluded from the
following analysis.

The mean and standard deviation in this sample of 134 are 28.8 and 6.7 kg/meter2,
respectively. The sample size is large enough to justify using the normal approxi-
mation when computing the confidence interval. The standard error of the mean is
SE = 6.7/

√
134 = 0.58, so the 95% confidence interval is given by

xBMI ± (1.96)(SE) = 28.8± (1.96)(0.58)

= (27.7,29.9).

Based on this sample, a data analyst can be 95% confident that the average BMI of
US adults is between 27.7 and 29.9 kg/m2.

The World Health Organization (WHO) and other agencies use BMI to set normative
guidelines for body weight. The current guidelines are shown in Table 4.12.

The confidence interval (27.7, 29.9) kg/m2 certainly suggests that the average BMI
in the US population is higher than 21.7, the middle of the range for normal BMIs,
and even higher than 24.99, the upper limit of the normal weight category. These
data indicate that Americans tend to be overweight.

14The sample was drawn from a larger sample of 20,293 participants in the NHANES package, available from
The Comprehensive R Archive Network (CRAN). The CDC uses a complex sampling design that samples some
demographic subgroups with larger probabilities, but nhanes.samp has been adjusted so that it can be viewed as
a random sample of the US population.
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Category BMI range

Underweight < 18.50
Normal (healthy weight) 18.5-24.99

Overweight ≥ 25
Obese ≥ 30

Table 4.12: WHO body weight categories based on BMI.

4.3 Hypothesis testing

Important decisions in science, such as whether a new treatment for a disease should be
approved for the market, are primarily data-driven. For example, does a clinical study of
a new cholesterol-lowering drug provide robust evidence of a beneficial effect in patients
at risk for heart disease? A confidence interval can be calculated from the study data to
provide a plausible range of values for a population parameter, such as the population
average decrease in cholesterol levels. A drug is considered to have a beneficial effect on
a population of patients if the population average effect is large enough to be clinically
important. It is also necessary to evaluate the strength of the evidence that a drug is
effective; in other words, is the observed effect larger than would be expected from chance
variation alone?

Hypothesis testing is a method for calculating the probability of making a specific
observation under a working hypothesis, called the null hypothesis. By assuming that the
data come from a distribution specified by the null hypothesis, it is possible to calculate
the likelihood of observing a value as extreme as the one represented by the sample. If
the chances of such an extreme observation are small, there is enough evidence to reject
the null hypothesis in favor of an alternative hypothesis.

Null and alternative hypotheses

The null hypothesis (H0) often represents either a skeptical perspective or a
claim to be tested. The alternative hypothesis (HA) is an alternative claim and is
often represented by a range of possible parameter values.

Generally, an investigator suspects that the null hypothesis is not true and performs
a hypothesis test in order to evaluate the strength of the evidence against the null hy-
pothesis. The logic behind rejecting or failing to reject the null hypothesis is similar to
the principle of presumption of innocence in many legal systems. In the United States, a
defendant is assumed innocent until proven guilty; a verdict of guilty is only returned if
it has been established beyond a reasonable doubt that the defendant is not innocent. In
the formal approach to hypothesis testing, the null hypothesis (H0) is not rejected unless
the evidence contradicting it is so strong that the only reasonable conclusion is to reject
H0 in favor of HA.

The next section presents the steps in formal hypothesis testing, which is applied
when data are analyzed to support a decision or make a scientific claim.
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4.3.1 The Formal Approach to Hypothesis Testing

In this section, hypothesis testing will be used to address the question of whether Amer-
icans generally wish to be heavier or lighter than their current weight. In the cdc data,
the two variables weight and wtdesire are, respectively, the recorded actual and desired
weights for each respondent, measured in pounds.

Suppose that µ is the population average of the difference weight − wtdesire. Using
the observations from cdc.samp, assess the strength of the claim that, on average, there is
no systematic preference to be heavier or lighter.

Step 1: Formulating null and alternative hypotheses

The claim to be tested is that the population average of the difference between actual and
desired weight for US adults is equal to 0.

H0 : µ = 0.

In the absence of prior evidence that people typically wish to be lighter (or heavier),
it is reasonable to begin with an alternative hypothesis that allows for differences in either
direction.

HA : µ , 0.

The alternative hypothesis HA : µ , 0 is called a two-sided alternative. A one-sided
alternative could be used if, for example, an investigator felt there was prior evidence that
people typically wish to weigh less than they currently do: HA : µ > 0.

More generally, when testing a hypothesis about a population mean µ, the null and
alternative hypotheses are written as follows

– For a two-sided alternative:

H0 : µ = µ0, HA : µ , µ0.

– For a one-sided alternative:

H0 : µ = µ0, HA : µ < µ0

or
H0 : µ = µ0, HA : µ > µ0;

The symbol µ denotes a population mean, while µ0 refers to the numeric value spec-
ified by the null hypothesis; in this example, µ0 = 0. Note that null and alternative hy-
potheses are statements about the underlying population, not the observed values from a
sample.

Step 2: Specifying a significance level, α

It is important to specify how rare or unlikely an event must be in order to represent suf-
ficient evidence against the null hypothesis. This should be done during the design phase
of a study, to prevent any bias that could result from defining ’rare’ only after analyzing
the results.

When testing a statistical hypothesis, an investigator specifies a significance level,
α, that defines a ’rare’ event. Typically, α is chosen to be 0.05, though it may be larger or
smaller, depending on context; this is discussed in more detail in Section 4.3.4. An α level
of 0.05 implies that an event occurring with probability lower than 5% will be considered
sufficient evidence against H0.
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Step 3: Calculating the test statistic

Calculating the test statistic t is analogous to standardizing observations with Z-scores as
discussed in Chapter 3. The test statistic quantifies the number of standard deviations
between the sample mean x and the population mean µ:

t =
x −µ0

s/
√
n
,

where s is the sample standard deviation and n is the number of observations in
the sample. If x = weight − wtdesire, then for the 60 recorded differences in cdc.samp,
x = 18.2 and s = 33.46. In this sample, respondents weigh on average about 18 lbs more
than they wish. The test statistic is

t =
18.2− 0

33.46/
√

60
= 4.22.

The observed sample mean is 4.22 standard deviations to the right of µ0 = 0.

Step 4: Calculating the p-value

The p-value is the probability of observing a sample mean as or more extreme than the
observed value, under the assumption that the null hypothesis is true. In samples of size
40 or more, the t-statistic will have a standard normal distribution unless the data are
strongly skewed or extreme outliers are present. Recall that a standard normal distribu-
tion has mean 0 and standard deviation 1.

For two-sided tests, with HA : µ , µ0, the p-value is the sum of the area of the two
tails defined by the t-statistic: 2P (Z ≥ |t|) = P (Z ≤ −|t|) + P (Z ≥ |t|) (Figure 4.13).

t−statisticµ = 0  

Figure 4.13: A two-sided p-value forHA : µ , µ0 on a standard normal dis-
tribution. The shaded regions represent observations as or more extreme
than x in either direction.

For one-sided tests with HA : µ > µ0, the p-value is given by P (Z ≥ t), as shown in
Figure 4.14. If HA : µ < µ0, the p-value is the area to the left of the t-statistic, P (Z ≤ t).

The p-value can either be calculated from software or from the normal probability
tables. For the weight-difference example, the p-value is vanishingly small: p = P (Z ≤
−4.22) + P (Z > 4.22) < 0.001.
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µ = 0  t−statistic

Figure 4.14: A one-sided p-value for HA : µ > µ0 on a standard normal dis-
tribution is represented by the shaded area to the right of the t-statistic.
This area equals the probability of making an observation as or more ex-
treme than x, if the null hypothesis is true.

Step 5: Drawing a conclusion

To reach a conclusion about the null hypothesis, directly compare p and α. Note that for a
conclusion to be informative, it must be presented in the context of the original question;
it is not useful to only state whether or not H0 is rejected.

If p > α, the observed sample mean is not extreme enough to warrant rejecting H0;
more formally stated, there is insufficient evidence to reject H0. A high p-value suggests
that the difference between the observed sample mean and µ0 can reasonably be attributed
to random chance.

If p ≤ α, there is sufficient evidence to reject H0 and accept HA. In the cdc.samp
weight-difference data, the p-value is very small, with the t-statistic lying to the right of
the population mean. The chance of drawing a sample with mean as large or larger than
18.2 if the distribution were centered at 0 is less than 0.001. Thus, the data support the
conclusion that on average, the difference between actual and desired weight is not 0 and
is positive; people generally seem to feel they are overweight.⊙

Guided Practice 4.12 Suppose that the mean weight difference in the sampled
group of 60 adults had been 7 pounds instead of 18.2 pounds, but with the same
standard deviation of 33.46 pounds. Would there still be enough evidence at the
α = 0.05 level to reject H0 : µ = 0 in favor of HA : µ , 0?15

4.3.2 Two examples

 Example 4.13 While fish and other types of seafood are important for a healthy
diet, nearly all fish and shellfish contain traces of mercury. Dietary exposure to
mercury can be particularly dangerous for young children and unborn babies. Reg-
ulatory organizations such as the US Food and Drug Administration (FDA) provide
guidelines as to which types of fish have particularly high levels of mercury and

15Re-calculate the t-statistic: (7−0)/(33.46/
√

60) = 1.62. The p-value P (Z ≤ −1.62)+P (Z ≥ 1.62) = 0.105. Since
p > α, there is insufficient evidence to rejectH0. In this case, a sample average difference of 7 is not large enough
to discount the possibility that the observed difference is due to sampling variation, and that the observations
are from a distribution centered at 0.
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should be completely avoided by pregnant women and young children; additionally,
certain species known to have low mercury levels are recommended for consump-
tion. While there is no international standard that defines excessive mercury levels
in saltwater fish species, general consensus is that fish with levels above 0.50 parts
per million (ppm) should not be consumed. A study conducted to assess mercury
levels for saltwater fish caught off the coast of New Jersey found that a sample of
23 bluefin tuna had mean mercury level of 0.52 ppm, with standard deviation 0.16
ppm.16 Based on these data, should the FDA add bluefin tuna from New Jersey to
the list of species recommended for consumption, or should a warning be issued
about their mercury levels?

Let µ be the population average mercury content for bluefin tuna caught off the coast
of New Jersey. Conduct a two-sided test of the hypothesis µ = 0.50 ppm in order to
assess the evidence for either definitive safety or potential danger.

Formulate the null and alternative hypotheses. H0 : µ = 0.50 ppm vs. HA : µ , 0.50 ppm

Specify the significance level, α. A significance level of α = 0.05 seems reasonable.

Calculate the test statistic. The t-statistic has value

t =
x −µ0

s/
√
n

=
0.52− 0.50

0.16/
√

23
= 0.599.

Calculate the p-value.

For this two-sided alternative HA : µ , 0.50, the p-value is

P (Z ≤ −|t|) + P (Z ≥ |t|) = 2× P (Z ≥ 0.599) = 0.549.

t = 0.599µ = 0  

Figure 4.15: The blue shaded region represents the p-value, the area to
the right of t = 0.599 and to the left of −t = −0.599. The grey shaded
region represents the rejection region as defined by α; in this case, an
area of 0.025 in each tail. The t-statistic calculated from x would have
to lie within either of the grey regions in order to constitute sufficient
evidence against the null hypothesis.

Draw a conclusion. The p-value is larger than the specified significance level α, as
shown in Figure 4.15.17 The data do not show that the mercury content of bluefin

16J. Burger, M. Gochfeld, Science of the Total Environment 409 (2011) 1418âĂŞ1429
17The grey shaded regions are bounded by -1.96 and 1.96, since the area within 1.96 standard deviations of

the mean captures 95% of the distribution.
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tuna caught off the coast of New Jersey differs significantly from 0.50 ppm. Since p >
α, there is insufficient evidence to reject the null hypothesis that the mean mercury
level for the New Jersey coastal population of bluefin tuna is 0.50 ppm.

Note that "failure to reject" is not equivalent to "accepting" the null hypothesis. Re-
call the earlier analogy related to the principle of "innocent until proven guilty". If
there is not enough evidence to prove that the defendant is guilty, the official de-
cision must be "not guilty", since the defendant may not necessarily be innocent.
Similarly, while there is not enough evidence to suggest that µ is not equal to 0.5
ppm, it would be incorrect to claim that the evidence states that µ is 0.5 ppm.

From these data, there is not statistically significant evidence to either recommend
these fish as clearly safe for consumption or to warn consumers against eating them.
Based on these data, the Food and Drug Administration might decide to monitor
this species more closely and conduct further studies.

 Example 4.14 In 2015, the National Sleep Foundation published new guidelines
for the amount of sleep recommended for adults: 7-9 hours of sleep per night.18 The
NHANES survey includes a question asking respondents about how many hours per
night they sleep; the responses are available in nhanes.samp. In the sample of 134
adults used in the BMI example, the average reported hours of sleep is 6.90, with
standard deviation 1.39. Is there evidence that American adults sleep less than 7
hours per night?

Let µ be the population average of hours of sleep per night for US adults. Conduct
a one-sided test, since the question asks whether the average amount of sleep per
night might be less than 7 hours.

Formulate the null and alternative hypotheses. H0 : µ = 7 hours vs. HA : µ < 7 hours

Specify the significance level, α. Let α = 0.05, since the question does not reference a
different value.

Calculate the test statistic. The t-statistic has value

t =
x −µ0

s/
√
n

=
6.90− 7.00

1.33/
√

134
= −0.864.

Calculate the p-value.

For this one-sided alternative HA : µ < 7, the p-value is

P (Z ≤ t) = P (Z < −0.864) = 0.19.

Since the alternative states that µ0 is less than 7, the p-value is represented by the
area to the left of t = −0.864, as shown in Figure 4.16.

Draw a conclusion. The p-value is larger than the specified significance level α. The
null hypothesis is not rejected since the data do not represent sufficient evidence to
support the claim that American adults sleep less than 7 hours per night.⊙
Guided Practice 4.15 From these data, is there sufficient evidence at the α = 0.10
significance level to support the claim that American adults sleep more than 7 hours
per night?19

18Sleep Health: Journal of the National Sleep Foundation, Vol. 1, Issue 1, pp. 40 - 43
19The t-statistic does not change from 1.65. Re-calculate the p-value since the alternative hypothesis is now
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t = −0.864 µ = 0  

Figure 4.16: The blue shaded region represents the p-value, the area to the
left of t = −0.864. The grey shaded region represents the rejection region
of area 0.05 in the left tail.

4.3.3 Hypothesis testing and confidence intervals

The relationship between a hypothesis test and the corresponding confidence interval is
defined by the significance level α; the two approaches are based on the same inferential
logic, and differ only in perspective. The hypothesis testing approach asks whether x is far
enough away from µ0 to be considered extreme, while the confidence interval approach
asks whether µ0 is close enough to x to be plausible. In both cases, "far enough" and "close
enough" are defined by α, which determines the t? used to calculate the margin of error
m = t?(s/

√
n).20

Hypothesis Test. For a two-sided test, x needs to be at least m units away from µ0
in either direction to be considered extreme. The t-points marking off the rejection
region are equal to the t? value used in the confidence interval, with the positive
and negative t-points accounting for the ± structure in the confidence interval.

Confidence Interval. The plausible range of values for µ0 around x is defined as (x −
m, x+m). If µ0 is plausible, it can at most bem units away in either direction from x.
If the interval does not contain µ0, then µ0 is implausible according to α and there
is sufficient evidence to reject H0.

Suppose that a two-sided test is conducted at significance level α; the confidence
level of the matching interval is (1 −α)%. For example, a two-sided hypothesis test with
α = 0.05 can be compared to a 95% confidence interval. A hypothesis test will reject at
α = 0.05 if the 95% confidence interval does not contain the null hypothesis value of the
population mean (µ0).

HA : µ > 7: P (Z ≥ −0.864) = 0.81. Since p > α, there is insufficient evidence to reject H0 at α = 0.10. A common
error when conducting one-sided tests is to assume that the p-value will always be the area in the smaller of the
two tails to the right or left of the observed value. It is important to remember that the area corresponding to
the p-value is in the direction specified by the alternative hypothesis.

t = −0.864

20If the normal distribution is used, then m = z? (s/
√
n).
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The relationship between two-sided hypothesis tests and confidence intervals

When testing the null hypothesis H0 : µ = µ0 against the two-sided alternative
HA : µ , µ0, H0 will be rejected at significance level α when the 100(1 − α)%
confidence interval for µ does not contain µ0.

 Example 4.16 Calculate the confidence interval for the average mercury level for
bluefin tuna caught off the coast of New Jersey. The summary statistics for the sam-
ple of 21 fish are x = 0.53 ppm and s = 0.16 ppm. Does the interval agree with the
results of Example 4.13?

The 95% confidence interval is:

x ± 1.96
s
√
n

= 0.53± 1.96
0.16
√

21
= (0.462,0.598) ppm.

The confidence interval is relatively wide, containing values below 0.50 ppm that
might be regarded as safe, in addition to values that might be regarded as potentially
dangerous. This interval supports the conclusion reached from hypothesis testing;
the sample data does not suggest that the mercury level differs significantly from
0.50 ppm in either direction.

The same relationship applies for one-sided hypothesis tests. For example, a one-
sided hypothesis test with α = 0.05 and HA : µ > µ0 corresponds to a one-sided 95% confi-
dence interval that has a lower bound, but no upper bound (i.e., (x −m,∞)).

The relationship between one-sided hypothesis tests and confidence intervals

– When testing the null hypothesis H0 : µ = µ0 against the one-sided alterna-
tiveHA : µ > µ0,H0 will be rejected at significance level α when µ0 is smaller
than the lower bound of the 100(1 − α)% confidence interval for µ. This is
equivalent to µ0 having a value outside the lower one-sided confidence in-
terval (x −m,∞).

– When testing the null hypothesis H0 : µ = µ0 against the one-sided alterna-
tive HA : µ < µ0, H0 will be rejected at significance level α whenever µ0 is
larger than the upper bound of the 100(1 − α)% confidence interval for µ.
This is equivalent to µ0 having a value outside the upper one-sided confi-
dence interval (−∞,x+m).

 Example 4.17 Previously, a hypothesis test was conducted at α = 0.05 to test the
null hypothesis H0 : µ = 7 hours against the alternative HA : µ < 7 hours, for the av-
erage sleep per night US adults. Calculate the corresponding one-sided confidence
interval and compare the information obtained from a confidence interval versus a
hypothesis test. The summary statistics for the sample of 134 adults are x = 6.9 and
s = 1.39.
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In theory, a one-sided upper confidence interval extends to ∞ on the left side, but
since it is impossible to get negative sleep, it is more sensible to bound this confi-
dence interval by 0. The upper one-sided 95% confidence interval is

(0,x+ 1.645
s
√
n

) = (0,6.9 + 1.645
1.39
√

134
) = (0, 7.1) hours.

From these data, we can be 95% confident that the average sleep per night among US
adults is at most 7.1 hours per night. The µ0 value of 7 hours is inside the one-sided
interval; thus, there is not sufficient evidence to reject the null hypothesis H0 : µ = 7
against the one-sided alternative H0 : µ < 7 hours at α = 0.05.

The interval provides a range of plausible values for a parameter based on the ob-
served sample; in this case, the data suggest that the population average sleep per
night for US adults is no larger than 7.1 hours. The p-value from a hypothesis test
represents a measure of the strength of the evidence against the null hypothesis,
indicating how unusual the observed sample would be under H0; the hypothesis
test indicated that the data do not seem extreme enough (p = 0.19) to contradict the
hypothesis that the population average sleep hours per night is 7.

In practice, both a p-value and a confidence interval are computed when using a
sample to make inferences about a population parameter.

4.3.4 Decision errors

Hypothesis tests can potentially result in incorrect decisions, such as rejecting the null
hypothesis when the null is actually true. Table 4.17 shows the four possible ways that
the conclusion of a test can be right or wrong.

Test conclusion
Fail to reject H0 Reject H0 in favor of HA

H0 True Correct Decision Type 1 Error
Reality

HA True Type 2 Error Correct Decision

Table 4.17: Four different scenarios for hypothesis tests.

Rejecting the null hypothesis when the null is true represents a Type I error, while a
Type II error refers to failing to reject the null hypothesis when the alternative is true.

 Example 4.18 In a trial, the defendant is either innocent (H0) or guilty (HA). After
hearing evidence from both the prosecution and the defense, the court must reach
a verdict. What does a Type I Error represent in this context? What does a Type II
Error represent?

If the court makes a Type I error, this means the defendant is innocent, but wrongly
convicted (rejecting H0 when H0 is true). A Type II error means the court failed to
convict a defendant that was guilty (failing to reject H0 when H0 is false).

The probability of making a Type I error is the same as the significance level α, since
α determines the cutoff point for rejecting the null hypothesis. For example, if α is chosen
to be 0.05, then there is a 5% chance of incorrectly rejecting H0.
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The rate of Type I error can be reduced by lowering α (e.g., to 0.01 instead of 0.05);
doing so requires an observation to be more extreme to qualify as sufficient evidence
against the null hypothesis. However, this inevitably raises the rate of Type II errors,
since the test will now have a higher chance of failing to reject the null hypothesis when
the alternative is true.

 Example 4.19 In a courtroom setting, how might the rate of Type I errors be re-
duced? What effect would this have on the rate of Type II errors?

Lowering the rate of Type I error is equivalent to raising the standards for convic-
tion such that fewer people are wrongly convicted. This increases Type II error,
since higher standards for conviction leads to fewer convictions for people who are
actually guilty.⊙
Guided Practice 4.20 In a courtroom setting, how might the rate of Type II errors
be reduced? What effect would this have on the rate of Type I errors?21

Choosing a significance level

Reducing the error probability of one type of error increases the chance of making the
other type. As a result, the significance level is often adjusted based on the consequences
of any decisions that might follow from the result of a significance test.

By convention, most scientific studies use a significance level of α = 0.05; small
enough such that the chance of a Type I error is relatively rare (occurring on average 5
out of 100 times), but also large enough to prevent the null hypothesis from almost never
being rejected. If a Type I error is especially dangerous or costly, a smaller value of α is
chosen (e.g., 0.01). Under this scenario, it is better to be cautious about rejecting the null
hypothesis, so very strong evidence against H0 is required in order to reject the null and
accept the alternative. Conversely, if a Type II error is relatively dangerous, then a larger
value of α is chosen (e.g., 0.10). Hypothesis tests with larger values of α will reject H0
more often.

For example, in the early stages of assessing a drug therapy, it may be important to
continue further testing even if there is not very strong initial evidence for a beneficial
effect. If the scientists conducting the research know that any initial positive results will
eventually be more rigorously tested in a larger study, they might choose to use α = 0.10
to reduce the chances of making a Type II error: prematurely ending research on what
might turn out to be a promising drug.

A government agency responsible for approving drugs to be marketed to the general
population, however, would likely be biased towards minimizing the chances of making a
Type I error—approving a drug that turns out to be unsafe or ineffective. As a result, they
might conduct tests at significance level 0.01 in order to reduce the chances of concluding
that a drug works when it is in fact ineffective. The US FDA and the European Medical
Agency (EMA) customarily require that two independent studies show the efficacy of a
new drug or regimen using α = 0.05, though other values are sometimes used.

21To lower the rate of Type II error, the court could lower the standards for conviction, or in other words,
lower the bar for what constitutes sufficient evidence of guilt (increase α, e.g. to 0.10 instead of 0.05). This will
result in more guilty people being convicted, but also increase the rate of wrongful convictions, increasing the
Type I error.
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4.3.5 Choosing between one-sided and two-sided tests

In some cases, the choice of a one-sided or two-sided test can influence whether the null
hypothesis is rejected. For example, consider a sample for which the t-statistic is 1.80. If
a two-sided test is conducted at α = 0.05, the p-value is

P (Z ≤ −|t|) + P (Z ≥ |t|) = 2P (Z ≥ 1.80) = 0.072.

There is insufficient evidence to reject H0, since p > α. However, what if a one-sided
test is conducted at α = 0.05, with HA : µ > µ0? In this case, the p-value is

P (Z ≥ t) = P (Z ≥ 1.80) = 0.036.

The conclusion of the test is different: since p < α, there is sufficient evidence to reject
H0 in favor of the alternative hypothesis. Figure 4.18 illustrates the different outcomes
from the tests.

µ = 0

α 2= 0.025

t = 1.80

Figure 4.18: Under a one-sided test at significance level α = 0.05, a t-
statistic of 1.80 is within the rejection region (shaded light blue). However,
it would not be within the rejection region under a two-sided test with α
= 0.05 (darker blue).

Two-sided tests are more "conservative" than one-sided tests; it is more difficult to
reject the null hypothesis with a two-sided test. The p-value for a one-sided test is exactly
half the p-value for a two-sided test conducted at the same significance level; as a result,
it is easier for the p-value from a one-sided test to be smaller than α. Additionally, since
the rejection region for a two-sided test is divided between two tails, a test statistic needs
to be more extreme in order to fall within a rejection region. While the t-statistic of 1.80
is not within the two-sided rejection region, it is within the one-sided rejection region.22

For a fixed sample size, a one-tailed test will have a smaller probability of Type II
error in comparison to a two-tailed test conducted at the same α level. In other words,
with a one-sided test, it is easier to reject the null hypothesis if the alternative is actually
true.

The choice of test should be driven by context, although it is not always clear which
test is appropriate. Since it is easier to reject H0 with the one-tailed test, it might be

22The two-sided rejection regions are bounded by -1.96 and 1.96, while the one-sided rejection region begins
at 1.65.
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tempting to always use a one-tailed test when a significant result in a particular direction
would be interesting or desirable.

However, it is important to consider the potential consequences of missing a signif-
icant difference in the untested direction. Generally, a two-sided test is the safest option,
since it does not incorporate any existing biases about the direction of the results and can
detect a difference at either the upper or lower tail. In the 1980s, researchers were in-
terested in assessing a new set of drugs expected to be more effective at reducing heart
arrhythmias than previously available therapies. They designed a one-sided clinical trial,
convinced that the newer therapy would reduce mortality. The trial was quickly termi-
nated due to an unanticipated effect of the drug; an independent review board found that
the newer therapy was almost 4 times as likely to kill patients as a placebo! In a clinical
research setting, it can be dangerous and even unethical to conduct a one-sided test under
the belief that there is no possibility of patient harm from the drug intervention being
tested.

One-sided tests are appropriate if the consequences of missing an effect in the untested
direction are negligible, or if a large observed difference in the untested direction and a
conclusion of "no difference" lead to the same decision. For example, suppose that a com-
pany has developed a drug to reduce blood pressure that is cheaper to produce than cur-
rent options available on the market. If the drug is shown to be equally effective or more
effective than an existing drug, the company will continue investing in it. Thus, they are
only interested in testing the alternative hypothesis that the new drug is less effective than
the existing drug, in which case, they will stop the project. It is acceptable to conduct a
one-sided test in this situation since missing an effect in the other direction causes no
harm.

The decision as to whether to use a one-sided or two-sided test must be made before
data analysis begins, in order to avoid biasing conclusions based on the results of a hy-
pothesis test. In particular, changing to a one-sided test after discovering that the results
are "almost" significant for the two-sided test is unacceptable. Manipulating analyses in
order to achieve low p-values leads to invalid results that are often not replicable. Unfor-
tunately, this kind of "significance-chasing" has become widespread in published science,
leading to concern that most current published research findings are false.

4.3.6 The informal use of p-values

Formal hypothesis tests are designed for settings where a decision or a claim about a
hypothesis follows a test, such as in scientific publications where an investigator wishes
to claim that an intervention changes an outcome. However, progress in science is usually
based on a collection of studies or experiments, and it is often the case that the results of
one study are used as a guide for the next study or experiment.

Sir Ronald Fisher was the first to propose using p-values as one of the statistical tools
for evaluating an experiment. In his view, an outcome from an experiment that would
only happen 1 in 20 times (p = 0.05) was worth investigating further. The use of p-values
for formal decision making came later. While valuable, formal hypothesis testing can
often be overused; not all significant results should lead to a definitive claim, but instead
prompt further analysis.

The formal use of p-values is emphasized here because of its prominence in the scien-
tific literature, and because the steps outlined are fundamental to the scientific method for
empirical research: specify hypotheses, state in advance how strong the evidence should
be to constitute sufficient evidence against the null, specify the method of analysis and
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compute the test statistic, draw a conclusion. These steps are designed to avoid the pit-
fall of choosing a hypothesis or method of analysis that is biased by the data and hence
reaches a conclusion that may not be reproducible.
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4.4 Notes

Confidence intervals and hypothesis testing are two of the central concepts in inference
for a population based on a sample. The confidence interval shows a range of popula-
tion parameter values consistent with the observed sample, and is often used to design
additional studies. Hypothesis testing is a useful tool for evaluating the strength of the
evidence against a working hypothesis according to a pre-specified standard for accepting
or rejecting hypotheses.

The calculation of p-values and confidence intervals is relatively straightforward;
given the necessary summary statistics, α, and confidence coefficients, finding any p-value
or confidence interval simply involves a set of formulaic steps. However, the more difficult
parts of any inference problem are the steps that do not involve any calculations. Spec-
ifying appropriate null and alternative hypotheses for a test relies on an understanding
of the problem context and the scientific setting of the investigation. Similarly, a choice
about a confidence coefficient for an interval relies on judgment as to balancing precision
against the chance of possible error. It is also not necessarily obvious when a significance
level other than α = 0.05 should be applied. These choices represent the largest distinc-
tion between a true statistics problem as compared to a purely mathematical exercise.

Furthermore, in order to rely on the conclusions drawn from making inferences, it is
necessary to consider factors such as study design, measurement quality, and the validity
of any assumptions made. For example, is it valid to use the normal approximation to
calculate p-values? In small to moderate sample sizes (30 ≤ n ≤ 50), it may not be clear
that the normal model is accurate. It is even necessary to be cautious about the use and
interpretation of the p-value. For example, an article published in Nature about the mis-
use of p-values references a published study that showed people who meet their spouses
online are more likely to have marital satisfaction, with p-value less than 0.001. However,
statistical significance does not measure the importance or practical relevance of a result;
in this case, the change in happiness moved from 5.48 to 5.64 on a 7-point scale. A p-value
reported without context or other evidence is uninformative and potentially deceptive.

These nuanced issues cannot be adequately covered in any introduction to statistics.
It is unrealistic to encourage students to use their own judgment with aspects of inference
that even experienced investigators find challenging. At the same time, it would also be
misleading to suggest that the choices are always clear-cut in practice. It seems best to
offer some practical guidance for getting started:

– The default choice of α is 0.05; similarly, the default confidence coefficient for a
confidence interval is 95%.

– Unless it is clear from the context of a problem that change in only one direction
from the null hypothesis is of interest, the alternative hypothesis should be two-
sided.

– The use of a standard normal distribution to calculate p-values is reasonable for
sample sizes of 30 or more if the distribution of data are not strongly skewed and
there are no large outliers. If there is skew or a few large outliers, sample sizes of 50
or more are usually sufficient.

– Pay attention to the context of a problem, particularly when formulating hypotheses
and drawing conclusions.

The next chapters will discuss methods of inference in specific settings, such as com-
paring two groups. These settings expand on the concepts discussed in this chapter and
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offer additional opportunities to practice calculating tests and intervals, reading problems
for context, and checking underlying assumptions behind methods of inference.

The labs for the chapter reinforce conceptual understanding of confidence intervals
and hypothesis tests, and their link to sampling variability using the data from the YRBSS
and NHANES. Both datasets are large enough to be viewed in an instructional setting
as populations from which repeated samples can be drawn. They are useful platforms
for illustrating the conceptual role of hypothetical repeated sampling in the properties of
tests and intervals, a topic which many students find difficult. Students may find the last
lab for this chapter (Lab 4) particularly helpful for understanding conceptual details of
inference, such as the distinction between the significance level α and the p-value, and
the definition of α as the Type I error rate.
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4.5 Exercises

4.5.1 Variability in estimates
4.1 Heights of adults. Researchers studying anthropometry collected body girth measurements
and skeletal diameter measurements, as well as age, weight, height and gender, for 507 physically
active individuals. The histogram below shows the sample distribution of heights in centimeters.23
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(a) What is the point estimate for the average height of active individuals?
(b) What is the point estimate for the standard deviation of the heights of active individuals? What

about the IQR?
(c) Is a person who is 1m 80cm (180 cm) tall considered unusually tall? And is a person who is 1m

55cm (155cm) considered unusually short? Explain your reasoning.
(d) The researchers take another random sample of physically active individuals. Would you expect

the mean and the standard deviation of this new sample to be the ones given above? Explain
your reasoning.

(e) The sample means obtained are point estimates for the mean height of all active individuals,
if the sample of individuals is equivalent to a simple random sample. What measure is used
to quantify the variability of such an estimate? Compute this quantity using the data from the
original sample under the condition that the data are a simple random sample.

4.2 Egg coloration. The evolutionary role of variation in bird egg coloration remains mysterious to
biologists. One hypothesis suggests that egg color may play a role in sexual selection. For example,
perhaps healthier females are able to deposit more blue-green pigment into eggshells instead of
using it themselves as an antioxidant. Researchers measured the blue-green chroma (BGC) of 70
different collared flycatcher nests in an area of the Czech Republic.
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23Heinz:2003.
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(a) What is the point estimate for the average BGC of nests?
(b) What is the point estimate for the standard deviation of the BGC of eggs across nests?
(c) Would a nest with average BGC of 0.63 be considered unusually high? Explain your reasoning.
(d) Compute the standard error of the sample mean using the summary statistics.

4.3 Hen eggs. The distribution of the number of eggs laid by a certain species of hen during
their breeding period is on average, 35 eggs, with a standard deviation of 18.2. Suppose a group
of researchers randomly samples 45 hens of this species, counts the number of eggs laid during
their breeding period, and records the sample mean. They repeat this 1,000 times, and build a
distribution of sample means.

(a) What is this distribution called?
(b) Would you expect the shape of this distribution to be symmetric, right skewed, or left skewed?

Explain your reasoning.
(c) Calculate the variability of this distribution and state the appropriate term used to refer to this

value.
(d) Suppose the researchers’ budget is reduced and they are only able to collect random samples of

10 hens. The sample mean of the number of eggs is recorded, and we repeat this 1,000 times,
and build a new distribution of sample means. How will the variability of this new distribution
compare to the variability of the original distribution?

4.5.2 Confidence intervals
4.4 Chronic illness, Part I. In 2013, the Pew Research Foundation reported that “45% of U.S.
adults report that they live with one or more chronic conditions”.24 However, this value was based
on a sample, so it may not be a perfect estimate for the population parameter of interest on its own.
The study reported a standard error of about 1.2%, and a normal model may reasonably be used in
this setting. Create a 95% confidence interval for the proportion of U.S. adults who live with one or
more chronic conditions. Also, interpret the confidence interval in the context of the study.

4.5 Twitter users and news, Part I. A poll conducted in 2013 found that 52% of U.S. adult Twitter
users get at least some news on Twitter.25. The standard error for this estimate was 2.4%, and a
normal distribution may be used to model the sample proportion. Construct a 99% confidence
interval for the fraction of U.S. adult Twitter users who get some news on Twitter, and interpret the
confidence interval in context.

4.6 Chronic illness, Part II. In 2013, the Pew Research Foundation reported that “45% of U.S.
adults report that they live with one or more chronic conditions”, and the standard error for this
estimate is 1.2%. Identify each of the following statements as true or false. Provide an explanation
to justify each of your answers.

(a) We can say with certainty that the confidence interval from Exercise 4.4 contains the true per-
centage of U.S. adults who suffer from a chronic illness.

(b) If we repeated this study 1,000 times and constructed a 95% confidence interval for each study,
then approximately 950 of those confidence intervals would contain the true fraction of U.S.
adults who suffer from chronic illnesses.

(c) The poll provides statistically significant evidence (at the α = 0.05 level) that the percentage of
U.S. adults who suffer from chronic illnesses is below 50%.

(d) Since the standard error is 1.2%, only 1.2% of people in the study communicated uncertainty
about their answer.

24data:pewdiagnosis:2013.
25data:pewtwitternews:2013.
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4.7 Twitter users and news, Part II. A poll conducted in 2013 found that 52% of U.S. adult Twitter
users get at least some news on Twitter, and the standard error for this estimate was 2.4%. Identify
each of the following statements as true or false. Provide an explanation to justify each of your
answers.

(a) The data provide statistically significant evidence that more than half of U.S. adult Twitter users
get some news through Twitter. Use a significance level of α = 0.01.

(b) Since the standard error is 2.4%, we can conclude that 97.6% of all U.S. adult Twitter users were
included in the study.

(c) If we want to reduce the standard error of the estimate, we should collect less data.
(d) If we construct a 90% confidence interval for the percentage of U.S. adults Twitter users who

get some news through Twitter, this confidence interval will be wider than a corresponding 99%
confidence interval.

4.8 Relaxing after work. The 2010 General Social Survey asked the question: “After an average
work day, about how many hours do you have to relax or pursue activities that you enjoy?" to a
random sample of 1,155 Americans.26 A 95% confidence interval for the mean number of hours
spent relaxing or pursuing activities they enjoy is (1.38, 1.92).

(a) Interpret this interval in context of the data.
(b) Suppose another set of researchers reported a confidence interval with a larger margin of error

based on the same sample of 1,155 Americans. How does their confidence level compare to the
confidence level of the interval stated above?

(c) Suppose next year a new survey asking the same question is conducted, and this time the sample
size is 2,500. Assuming that the population characteristics, with respect to how much time
people spend relaxing after work, have not changed much within a year. How will the margin
of error of the new 95% confidence interval compare to the margin of error of the interval stated
above?

(d) Suppose the researchers think that 90% confidence interval would be more appropriate. Will
this new interval be smaller or larger than the original 95% confidence interval? Justify your
answer. (Assume that the standard deviation remains constant).

4.9 Mental health. The 2010 General Social Survey asked the question: “For how many days
during the past 30 days was your mental health, which includes stress, depression, and problems
with emotions, not good?" Based on responses from 1,151 US residents, the survey reported a 95%
confidence interval of 3.40 to 4.24 days in 2010.

(a) Interpret this interval in context of the data.
(b) What does “95% confident" mean? Explain in the context of the application.
(c) Suppose the researchers think a 99% confidence level would be more appropriate for this inter-

val. Will this new interval be smaller or larger than the 95% confidence interval?
(d) If a new survey were to be done with 500 Americans, would the standard error of the estimate

be larger, smaller, or about the same? Assume the standard deviation has remained constant
since 2010.

4.10 Waiting at an ER, Part I. A hospital administrator hoping to improve wait times decides to
estimate the average emergency room waiting time at her hospital. She collects a simple random
sample of 64 patients and determines the time (in minutes) between when they checked in to the
ER until they were first seen by a doctor. A 95% confidence interval based on this sample is (128
minutes, 147 minutes), which is based on the normal model for the mean. Determine whether the
following statements are true or false, and explain your reasoning.

(a) This confidence interval is not valid since we do not know if the population distribution of the
ER wait times is nearly Normal.

26data:gss:2010.
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(b) We are 95% confident that the average waiting time of these 64 emergency room patients is
between 128 and 147 minutes.

(c) We are 95% confident that the average waiting time of all patients at this hospital’s emergency
room is between 128 and 147 minutes.

(d) 95% of random samples have a sample mean between 128 and 147 minutes.

(e) A 99% confidence interval would be narrower than the 95% confidence interval since we need
to be more sure of our estimate.

(f) The margin of error is 9.5 and the sample mean is 137.5.

(g) Halving the margin of error of a 95% confidence interval requires doubling the sample size.

4.11 Thanksgiving spending, Part I. The 2009 holiday retail season, which kicked off on Novem-
ber 27, 2009 (the day after Thanksgiving), had been marked by somewhat lower self-reported con-
sumer spending than was seen during the comparable period in 2008. To get an estimate of con-
sumer spending, 436 randomly sampled American adults were surveyed. Daily consumer spending
for the six-day period after Thanksgiving, spanning the Black Friday weekend and Cyber Monday,
averaged $84.71. A 95% confidence interval based on this sample is ($80.31, $89.11). Determine
whether the following statements are true or false, and explain your reasoning.
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(a) We are 95% confident that the average spending of these 436 American adults is between $80.31
and $89.11.

(b) This confidence interval is not valid since the distribution of spending in the sample is right
skewed.

(c) 95% of random samples have a sample mean between $80.31 and $89.11.

(d) We are 95% confident that the average spending of all American adults is between $80.31 and
$89.11.

(e) A 90% confidence interval would be narrower than the 95% confidence interval.

(f) The margin of error is 4.4.

4.12 Age at first marriage, Part I. The National Survey of Family Growth conducted by the Centers
for Disease Control gathers information on family life, marriage and divorce, pregnancy, infertility,
use of contraception, and men’s and women’s health. One of the variables collected on this survey
is the age at first marriage. The histogram below shows the distribution of ages at first marriage of
5,534 randomly sampled women between 2006 and 2010. The average age at first marriage among
these women is 23.44 with a standard deviation of 4.72.27

27data:nsfg:2010.
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Estimate the average age at first marriage of women using a 95% confidence interval, and interpret
this interval in context. Discuss any relevant assumptions.

4.5.3 Hypothesis testing
4.13 Identify hypotheses, Part I. Write the null and alternative hypotheses in words and then
symbols for each of the following situations.

(a) New York is known as “the city that never sleeps". A random sample of 25 New Yorkers were
asked how much sleep they get per night. Do these data provide convincing evidence that New
Yorkers on average sleep less than 8 hours a night?

(b) Employers at a firm are worried about the effect of March Madness, a basketball championship
held each spring in the US, on employee productivity. They estimate that on a regular business
day employees spend on average 15 minutes of company time checking personal email, making
personal phone calls, etc. They also collect data on how much company time employees spend
on such non- business activities during March Madness. They want to determine if these data
provide convincing evidence that employee productivity decreases during March Madness.

4.14 Identify hypotheses, Part II. Write the null and alternative hypotheses in words and using
symbols for each of the following situations.

(a) Since 2008, chain restaurants in California have been required to display calorie counts of each
menu item. Prior to menus displaying calorie counts, the average calorie intake of diners at a
restaurant was 1100 calories. After calorie counts started to be displayed on menus, a nutrition-
ist collected data on the number of calories consumed at this restaurant from a random sample
of diners. Do these data provide convincing evidence of a difference in the average calorie intake
of a diners at this restaurant?

(b) Based on the performance of those who took the GRE exam between July 1, 2004 and June 30,
2007, the average Verbal Reasoning score was calculated to be 462. In 2011 the average verbal
score was slightly higher. Do these data provide convincing evidence that the average GRE
Verbal Reasoning score has changed since 2004?

4.15 Online communication. A study suggests that the average college student spends 10 hours
per week communicating with others online. You believe that this is an underestimate and decide
to collect your own sample for a hypothesis test. You randomly sample 60 students from your
dorm and find that on average they spent 13.5 hours a week communicating with others online. A
friend of yours, who offers to help you with the hypothesis test, comes up with the following set of
hypotheses. Indicate any errors you see.

H0 : x̄ < 10 hours

HA : x̄ > 13.5 hours

4.16 Age at first marriage, Part II. Exercise 4.12 presents the results of a 2006 - 2010 survey
showing that the average age of women at first marriage is 23.44. Suppose a social scientist believes
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that this value has increased in 2012, but she would also be interested if she found a decrease. Below
is how she set up her hypotheses. Indicate any errors you see.

H0 : x̄ = 23.44 years

HA : x̄ > 23.44 year

4.17 Waiting at an ER, Part II. Exercise 4.10 provides a 95% confidence interval for the mean
waiting time at an emergency room (ER) of (128 minutes, 147 minutes). Answer the following
questions based on this interval.

(a) A local newspaper claims that the average waiting time at this ER exceeds 3 hours. Is this claim
supported by the confidence interval? Explain your reasoning.

(b) The Dean of Medicine at this hospital claims the average wait time is 2.2 hours. Is this claim
supported by the confidence interval? Explain your reasoning.

(c) Without actually calculating the interval, determine if the claim of the Dean from part (b) would
be supported based on a 99% confidence interval?

4.18 Nutrition labels. The nutrition label on a bag of potato chips says that a one ounce (28 gram)
serving of potato chips has 130 calories and contains ten grams of fat, with three grams of saturated
fat. A random sample of 35 bags yielded a sample mean of 134 calories with a standard deviation
of 17 calories. Is there evidence that the nutrition label does not provide an accurate measure of
calories in the bags of potato chips? We have verified the independence, sample size, and skew
conditions are satisfied.

4.19 Gifted children, Part I. Researchers investigating characteristics of gifted children collected
data from schools in a large city on a random sample of thirty-six children who were identified as
gifted children soon after they reached the age of four. The following histogram shows the distribu-
tion of the ages (in months) at which these children first counted to 10 successfully. Also provided
are some sample statistics.28

Age child first counted to 10 (in months)
20 25 30 35 40

0

3

6

n 36
min 21

mean 30.69
sd 4.31

max 39

(a) Are conditions for inference satisfied?
(b) Suppose an online survey reports that children first count to 10 successfully when they are 32

months old, on average. Perform a hypothesis test to evaluate if these data provide convincing
evidence that the average age at which gifted children first count to 10 successfully is less than
the general average of 32 months. Use a significance level of 0.10.

(c) Interpret the p-value in context of the hypothesis test and the data.
(d) Calculate a 90% confidence interval for the average age at which gifted children first count to

10 successfully.
(e) Do your results from the hypothesis test and the confidence interval agree? Explain.

4.20 Waiting at an ER, Part III. The hospital administrator mentioned in Exercise 4.10 randomly
selected 64 patients and measured the time (in minutes) between when they checked in to the ER

28Graybill:1994.
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and the time they were first seen by a doctor. The average time is 137.5 minutes and the standard
deviation is 39 minutes. She is getting grief from her supervisor on the basis that the wait times in
the ER has increased greatly from last year’s average of 127 minutes. However, she claims that the
increase is probably just due to chance.

(a) Calculate a 95% confidence interval. Is the change in wait times statistically significant at the
α = 0.05 level?

(b) Would the conclusion in part (a) change if the significance level were changed to α = 0.01?
(c) Is the supervisor justified in criticizing the hospital administrator regarding the change in ER

wait times? How might you present an argument in favor of the administrator?

4.21 Gifted children, Part II. Exercise 4.19 describes a study on gifted children. In this study,
along with variables on the children, the researchers also collected data on the mother’s and father’s
IQ of the 36 randomly sampled gifted children. The histogram below shows the distribution of
mother’s IQ. Also provided are some sample statistics.

Mother's IQ
100 105 110 115 120 125 130 135

0

4

8

12

n 36
min 101

mean 118.2
sd 6.5

max 131

(a) Perform a hypothesis test to evaluate if these data provide convincing evidence that the average
IQ of mothers of gifted children is different than the average IQ for the population at large,
which is 100. Use a significance level of 0.10.

(b) Calculate a 90% confidence interval for the average IQ of mothers of gifted children.
(c) Do your results from the hypothesis test and the confidence interval agree? Explain.

4.22 Birth weights. Suppose an investigator takes a random sample of n = 50 birth weights from
several teaching hospitals located in an inner-city neighborhood. In her random sample, the sample
mean x is 3,150 grams and the standard deviation is 250 grams.

(a) Calculate a 95% confidence interval for the population mean birth weight in these hospitals.
(b) The typical weight of a baby at birth for the US population is 3,250 grams. The investigator sus-

pects that the birth weights of babies in these teaching hospitals is different than 3,250 grams,
but she is not sure if it is smaller (from malnutrition) or larger (because of obesity prevalence in
mothers giving birth at these hospitals). Carry out the hypothesis test that she would conduct.

4.23 Testing for fibromyalgia. A patient named Diana was diagnosed with fibromyalgia, a long-
term syndrome of body pain, and was prescribed anti-depressants. Being the skeptic that she is,
Diana didn’t initially believe that anti-depressants would help her symptoms. However after a cou-
ple months of being on the medication she decides that the anti-depressants are working, because
she feels like her symptoms are in fact getting better.

(a) Write the hypotheses in words for Diana’s skeptical position when she started taking the anti-
depressants.

(b) What is a Type 1 Error in this context?
(c) What is a Type 2 Error in this context?

4.24 Testing for food safety. A food safety inspector is called upon to investigate a restaurant with
a few customer reports of poor sanitation practices. The food safety inspector uses a hypothesis
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testing framework to evaluate whether regulations are not being met. If he decides the restaurant is
in gross violation, its license to serve food will be revoked.

(a) Write the hypotheses in words.
(b) What is a Type 1 Error in this context?
(c) What is a Type 2 Error in this context?
(d) Which error is more problematic for the restaurant owner? Why?
(e) Which error is more problematic for the diners? Why?
(f) As a diner, would you prefer that the food safety inspector requires strong evidence or very

strong evidence of health concerns before revoking a restaurant’s license? Explain your reason-
ing.

4.25 Which is higher? In each part below, there is a value of interest and two scenarios (I and II).
For each part, report if the value of interest is larger under scenario I, scenario II, or whether the
value is equal under the scenarios.

(a) The standard error of x̄ when s = 120 and (I) n = 25 or (II) n = 125.
(b) The margin of error of a confidence interval when the confidence level is (I) 90% or (II) 80%.
(c) The p-value for a Z-statistic of 2.5 when (I) n = 500 or (II) n = 1000.
(d) The probability of making a Type 2 Error when the alternative hypothesis is true and the signif-

icance level is (I) 0.05 or (II) 0.10.

4.26 True or false. Determine if the following statements are true or false, and explain your
reasoning. If false, state how it could be corrected.

(a) If a given value (for example, the null hypothesized value of a parameter) is within a 95%
confidence interval, it will also be within a 99% confidence interval.

(b) Decreasing the significance level (α) will increase the probability of making a Type 1 Error.
(c) Suppose the null hypothesis is µ = 5 and we fail to reject H0. Under this scenario, the true

population mean is 5.
(d) If the alternative hypothesis is true, then the probability of making a Type 2 Error and the power

of a test add up to 1.
(e) With large sample sizes, even small differences between the null value and the true value of the

parameter, a difference often called the effect size , will be identified as statistically significant.



Chapter 5

Inference for numerical data

Chapter 4 introduced some primary tools of statistical inference—point estimates, inter-
val estimates, and hypothesis tests. This chapter discusses settings where these tools are
often used, including the analysis of paired observations and the comparison of two or
more independent groups. The chapter also covers the important topic of estimating an
appropriate sample size when a study is being designed. The chapter starts with intro-
ducing a new distribution, the t-distribution, which can be used for small sample sizes.

5.1 Inference for one-sample means with the t-distribution

The tools studied in Chapter 4 all made use of the t-statistic from a sample mean,

t =
x −µ
s/
√
n
,

where the parameter µ is a population mean, x and s are the sample mean and stan-
dard deviation, and n is the sample size. Tests and confidence intervals were restricted
to samples of at least 30 independent observations from a population where there was
no evidence of strong skewness. This allowed for the Central Limit Theorem to be ap-
plied, justifying use of the normal distribution to calculate probabilities associated with
the t-statistic.

In sample sizes smaller than 30, if the data are approximately symmetric and there
are no large outliers, the t-statistic has what is called a t-distribution. When the normal
distribution is used as the sampling distribution of the t-statistic, s is essentially being
treated as a good replacement for the unknown population standard deviation σ . How-
ever, the sample standard deviation s, as an estimate of σ , has its own inherent variability
like x. The t density function adjusts for the variability in s by having more probability in
the left and right tails than the normal distribution.

5.1.1 The t-distribution

Figure 5.1 shows a t distribution and normal distribution. Like the standard normal dis-
tribution, the t-distribution is unimodal and symmetric about zero. However, the tails of
a t-distribution are thicker than for the normal, so observations are more likely to fall be-
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−4 −2 0 2 4

Figure 5.1: Comparison of a t-distribution (solid line) and a normal dis-
tribution (dotted line).

−2 0 2 4 6 8

normal
t, df = 8
t, df = 4
t, df = 2
t, df = 1

Figure 5.2: The larger the degrees of freedom, the more closely the t-
distribution resembles the standard normal model.

yond two standard deviations from the mean than under the normal distribution.1 While
the estimate of the standard error will be less accurate with smaller sample sizes, the thick
tails of the t-distribution correct for the variability in s.

The t-distribution can be described as a family of symmetric distributions with a
single parameter: degrees of freedom, which equals n − 1. Several t-distributions are
shown in Figure 5.2. When there are more degrees of freedom, the t-distribution looks
very much like the standard normal distribution. With degrees of freedom of 30 or more,
the t-distribution is nearly indistinguishable from the normal distribution. Since the t-
statistics in Chapter 4 were associated with sample sizes of at least 30, the degrees of
freedom for the corresponding t-distributions were large enough to justify use of the nor-
mal distribution to calculate probabilities.

Degrees of freedom (df)

The degrees of freedom characterize the shape of the t-distribution. The larger
the degrees of freedom, the more closely the distribution approximates the nor-
mal model.

1The standard deviation of the t-distribution is actually a little more than 1. However, it is useful to think
of the t-distribution as having a standard deviation of 1 in the context of using it to conduct inference.
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Probabilities for the t-distribution can be calculated either by using distribution ta-
bles or using statistical software. The use of software has become the preferred method
because it is more accurate, allows for complete flexibility in the choice of t-values on the
horizontal axis, and is not limited to a small range of degrees of freedom. The remain-
der of this section illustrates the use of a t-table, partially shown in Table 5.3, in place
of the normal probability table. A larger t-table is in Appendix A.2 on page 350. The R
labs illustrate the use of software to calculate probabilities for the t-distribution. Readers
intending to use software can skip to the next section.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
...

...
...

...
...

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
∞ 1.28 1.64 1.96 2.33 2.58

Table 5.3: An abbreviated look at the t-table. Each row represents a differ-
ent t-distribution. The columns describe the cutoffs for specific tail areas.
The row with df = 18 has been highlighted.

Each row in the t-table represents a t-distribution with different degrees of freedom.
The columns correspond to tail probabilities. For instance, for a t-distribution with df =
18, row 18 is used (highlighted in Table 5.3). The value in this row that identifies the cutoff
for an upper tail of 5% is found in the column where one tail is 0.050. This cutoff is 1.73.
The cutoff for the lower 5% is -1.73; just like the normal distribution, all t-distributions
are symmetric. If the area in each tail is 5%, then the area in two tails is 10%; thus, this
column can also be described as the column where two tails is 0.100.

 Example 5.1 What proportion of the t-distribution with 18 degrees of freedom
falls below -2.10?

Just like for a normal probability problem, it is advisable to start by drawing the dis-
tribution and shading the area below -2.10, as shown in Figure 5.4. From the table,
identify the column containing the absolute value of -2.10; it is the third column.
Since this is just the probability in one tail, examine the top line of the table; a one
tail area for a value in the third column corresponds to 0.025. About 2.5% of the
distribution falls below -2.10.
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−4 −2 0 2 4

Figure 5.4: The t-distribution with 18 degrees of freedom. The area below
-2.10 has been shaded.

−4 −2 0 2 4

Figure 5.5: The t-distribution with 20 degrees of freedom, with the area
further than 1.65 away from 0 shaded.

 Example 5.2 A t-distribution with 20 degrees of freedom is shown in the left panel
of Figure 5.5. Estimate the proportion of the distribution falling above 1.65 and
below -1.65.

Identify the row in the t-table using the degrees of freedom: df − 20. Then, look for
1.65; the value is not listed, and falls between the first and second columns. Since
these values bound 1.65, their tail areas will bound the tail area corresponding to
1.65. The two tail area of the first and second columns is between 0.100 and 0.200.
Thus, between 10% and 20% of the distribution is more than 1.65 standard devia-
tions from the mean. The precise area can be calculated using statistical software:
0.1146.

5.1.2 Using the t-distribution for tests and confidence intervals for a
population mean

Chapter 4 provided formulas for tests and confidence intervals for population means in
random samples large enough for the t-statistic to have a nearly normal distribution. In
samples smaller than 30 from approximately symmetric distributions without large out-
liers, the t-statistic has a t-distribution with degrees of freedom equal to n − 1. Just like
inference in larger samples, inference using the t-distribution also requires that the ob-
servations in the sample be independent. Random samples from very large populations
always produce independent observations; in smaller populations, observations will be
approximately independent as long as the size of the sample is no larger than 10% of the
population.

Formulas for tests and intervals using the t−distribution are very similar to those
using the normal distribution. For a sample of size n with sample mean x and standard
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deviation s, two-sided confidence intervals with confidence coefficient 100(1 − α)% have
the form

x ± t?df × SE,

where SE is the standard error of the sample mean (s/
√
n) and t?df is the point on a t-

distribution with n− 1 degrees of freedom and area (1−α/2) to its left.
A one-sided interval with the same confidence coefficient will have the form

x+ t?df × SE (one-sided upper confidence interval), or

x − t?df × SE (one-sided lower confidence interval),

except that in this case t?df is the point on a t-distribution with n − 1 degrees of freedom
and area (1−α) to its left.

With the ability to conveniently calculate t? for any sample size or associated α via
computing software, the t-distribution can be used by default over the normal distribu-
tion. The rule of thumb that n > 30 qualifies as a large enough sample size to use the
normal distribution dates back to when it was necessary to rely on distribution tables.

 Example 5.3 Dolphins are at the top of the oceanic food chain; as a consequence,
dangerous substances such as mercury tend to be present in their organs and mus-
cles at high concentrations. In areas where dolphins are regularly consumed, it is
important to monitor dolphin mercury levels. This example uses data from a ran-
dom sample of 19 Risso’s dolphins from the Taiji area in Japan.2 Calculate the 95%
confidence interval for average mercury content in Risso’s dolphins from the Taiji
area.

n x s minimum maximum
19 4.4 2.3 1.7 9.2

Table 5.6: Summary of mercury content in the muscle of 19 Risso’s dol-
phins from the Taiji area. Measurements are in µg/wet g (micrograms of
mercury per wet gram of muscle).

The observations are a simple random sample consisting of less than 10% of the
population, so independence of the observations is reasonable. The summary statis-
tics in Table 5.6 do not suggest any skew or outliers; all observations are within 2.5
standard deviations of the mean. Based on this evidence, the approximate normality
assumption seems reasonable.

Use the t-distribution to calculate the confidence interval:

x ± t?df × SE = x ± t?18 × s/
√
n

= 4.4± 2.10× 2.3/
√

19

= (3.29,5.51) µg/wet g.

2Taiji is a significant source of dolphin and whale meat in Japan. Thousands of dolphins pass through the
Taiji area annually; assume that these 19 dolphins represent a simple random sample. Data reference: Endo T
and Haraguchi K. 2009. High mercury levels in hair samples from residents of Taiji, a Japanese whaling town.
Marine Pollution Bulletin 60(5):743-747.
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The t? point can be read from the t-table on page 210, in the column with area
totaling 0.05 in the two tails (third column) and the row with 18 degrees of free-
dom. Based on these data, one can be 95% confident the average mercury content of
muscles in Risso’s dolphins is between 3.29 and 5.51 µg/wet gram.

Alternatively, the t? point can be calculated in R with the function qt, which returns
a value of 2.1009.

⊙
Guided Practice 5.4 The FDA’s webpage provides some data on mercury content
of various fish species.3 From a sample of 15 white croaker (Pacific), a sample mean
and standard deviation were computed as 0.287 and 0.069 ppm (parts per million),
respectively. The 15 observations ranged from 0.18 to 0.41 ppm. Assume that these
observations are independent. Based on summary statistics, does the normality as-
sumption seem reasonable? If so, calculate a 90% confidence interval for the average
mercury content of white croaker (Pacific).4

 Example 5.5 According to the EPA, regulatory action should be taken if fish species
are found to have a mercury level of 0.5 ppm or higher. Conduct a formal signif-
icance test to evaluate whether the average mercury content of croaker white fish
(Pacific) is different from 0.50 ppm. Use α = 0.05.

The FDA regulatory guideline is a ‘one-sided’ statement; fish should not be eaten if
the mercury level is larger than a certain value. However, without prior information
on whether the mercury in this species tends to be high or low, it is best to do a
two-sided test.

State the hypotheses: H0 : µ = 0.5 vs HA : µ , 0.5. Let α = 0.05.

Calculate the t-statistic:

t =
x −µ0

SE
=

0.287− 0.50

0.069/
√

15
= −11.96

The probability that the absolute value of a t-statistic with 14 df is smaller than
-11.96 is smaller than 0.01. Thus, p < 0.01. There is evidence to suggest at the
α = 0.05 significance level that the average mercury content of this fish species is
lower than 0.50 ppm, since x is less than 0.50.

3www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm
4There are no obvious outliers; all observations are within 2 standard deviations of the mean. If there

is skew, it is not evident. There are no red flags for the normal model based on this (limited) information.
x ± t?14×SE → 0.287 ± 1.76×0.0178 → (0.256,0.318). We are 90% confident that the average mercury content
of croaker white fish (Pacific) is between 0.256 and 0.318 ppm.

http://www.openintro.org/redirect.php?go=textbook-fda_mercury_in_fish_2010&referrer=os3_pdf
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5.2 Two-sample test for paired data

In the 2000 Olympics, was the use of a new wetsuit design responsible for an observed
increase in swim velocities? In a study designed to investigate this question, twelve com-
petitive swimmers swam 1500 meters at maximal speed, once wearing a wetsuit and once
wearing a regular swimsuit.5 The order of wetsuit versus swimsuit was randomized for
each of the 12 swimmers. Table 5.7 shows the average velocity recorded for each swimmer,
measured in meters per second (m/s).6

swimmer.number wet.suit.velocity swim.suit.velocity velocity.diff
1 1 1.57 1.49 0.08
2 2 1.47 1.37 0.10
3 3 1.42 1.35 0.07
4 4 1.35 1.27 0.08
5 5 1.22 1.12 0.10
6 6 1.75 1.64 0.11
7 7 1.64 1.59 0.05
8 8 1.57 1.52 0.05
9 9 1.56 1.50 0.06

10 10 1.53 1.45 0.08
11 11 1.49 1.44 0.05
12 12 1.51 1.41 0.10

Table 5.7: Paired Swim Suit Data

The swimsuit velocity data are an example of paired data, in which two sets of obser-
vations are uniquely paired so that an observation in one set matches an observation in the
other; in this case, each swimmer has two measured velocities, one with a wetsuit and one
with a swimsuit. A natural measure of the effect of the wetsuit on swim velocity is the dif-
ference between the measured maximum velocities (velocity.diff = wet.suit.velocity
- swim.suit.velocity). Even though there are two measurements per swimmer, using
the difference in velocities as the variable of interest allows for the problem to be ap-
proached like those in Section 5.1. Although it was not explicitly noted, the data used in
Section 4.3.1 were paired; each respondent had both an actual and desired weight.

Suppose the parameter δ is the population average of the difference in maximum
velocities during a 1500m swim if all competitive swimmers recorded swim velocities
with each suit type. A hypothesis test can then be conducted with the null hypothesis that
the mean population difference in swim velocities between suit types equals 0 (i.e., there
is no difference in population average swim velocities), H0 : δ = 0, against the alternative
that the difference is non-zero, HA : δ , 0.

5De Lucas et. al, The effects of wetsuits on physiological and biomechanical indices during swimming.
Journal of Science and Medicine in Sport, 2000; 3(1): 1-8

6The data are available as swim in the oibiostat R package. The data are also used in Lock et. al Statistics,
Unlocking the Power of Data, Wiley, 2013.
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Stating hypotheses for paired data

When testing a hypothesis about paired data, compare the groups by testing
whether the population mean of the differences between the groups equals 0.

– For a two-sided test, H0 : δ = 0; HA : δ , 0.

– For a one-sided test, either H0 : δ = 0; HA : δ > 0 or H0 : δ = 0; HA : δ < 0.

Some important assumptions are being made. First, it is assumed that the data are
a random sample from the population. While the observations are likely independent, it
is more difficult to justify that this sample of 12 swimmers is randomly drawn from the
entire population of competitive swimmers. Nevertheless, it is often assumed in problems
such as these that the participants are reasonably representative of competitive swimmers.
Second, it is assumed that the population of differences is normally distributed. This is a
small sample, one in which normality would be difficult to confirm. The dot plot for the
difference in velocities in Figure 5.8 shows approximate symmetry.

Difference in Swim Velocities (m/s)

0.05 0.06 0.07 0.08 0.09 0.10 0.11

Figure 5.8: A dot plot of differences in swim velocities.

Let xdiff denote the sample average of the differences in maximum velocity, sdiff the
sample standard deviation of the differences, and n the number of pairs in the dataset.
The t-statistic used to test H0 vs. HA is:

xdiff − δ0

sdiff/
√
n
,

where in this case δ0 = 0.7

 Example 5.6 Using the data in Table 5.7, conduct a two-sided hypothesis test at
α = 0.05 to assess whether there is evidence to suggest that wetsuits have an effect
on swim velocities during a 1500m swim.

The hypotheses are H0 : δ = 0 and HA : δ , 0. Let α = 0.05.

Calculate the t-statistic:

t =
xdiff − δ0

sdiff/
√
n

=
0.078− 0

0.022/
√

12
= 12.32

The two-sided p-value is

p = P (T < −12.32) + P (T > 12.32),

7This value is specified by the null hypothesis of no difference.
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where t has a t-distribution with n − 1 = 11 degrees of freedom. The t-table shows
that p < 0.01. Software can be used to show that p = 2.3 × 10−7, a very small value
indeed.

The data support the claim that the wetsuits changed swim velocity in a 1500m
swim. The observed average increase of 0.078 m/s is significantly different than
the null hypothesis of no change, and suggests that swim velocities are higher when
swimmers wear wetsuits as opposed to swimsuits.

Calculating confidence intervals for paired data is also based on the differences be-
tween the values in each pair; the same approach as for single-sample data can be applied
on the differences. For example, a two-sided 95% confidence interval for paired data has
the form: (

xdiff − t?df ×
sdiff√
n
, xdiff + t?df ×

sdiff√
n

)
,

where t? is the point on a t-distribution with df = n − 1 for n pairs, with area 0.025
to its right.⊙

Guided Practice 5.7 Using the data in Table 5.7, calculate a 95% confidence in-
terval for the average difference in swim velocities during a 1500m swim. Is the
interval consistent with the results of the hypothesis test?8

The general approach when analyzing paired data is to first calculate the differences
between the values in each pair, then use those differences in methods for confidence
intervals and tests for a single sample. Any conclusion from an analysis should be stated
in terms of the original paired measurements.

8Use the values of xdiff and sdiff as calculated previously: 0.078 and 0.022. The t? value of 2.20 has df = 11
and 0.025 area to the right. The confidence interval is (0.078± 0.022√

12
)→ (0.064, 0.091) m/s. With 95% confidence,

δ lies between 0.064 m/s and 0.09 m/s. The interval does not include 0 (no change), which is consistent with the
result of the hypothesis test.
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5.3 Two sample test for independent data

Does treatment using embryonic stem cells (ESCs) help improve heart function following
a heart attack? New and potentially risky treatments are sometimes tested in animals
before studies in humans are conducted. In a 2005 paper in Lancet, Menard, et al. describe
an experiment in which 18 sheep with induced heart attacks were randomly assigned to
receive cell transplants containing either ESCs or inert material.9 Various measures of
cardiac function were measured 1 month after the transplant.

This design is typical of an intervention study. The analysis of such an experiment is
an example of drawing inference about the difference in two population means, µ1 − µ2,
when the data are independent, i.e., not paired. The point estimate of the difference,
x1 − x2, is used to calculate a t-statistic that is the basis of confidence intervals and tests.

5.3.1 Confidence interval for a difference of means

Table 5.9 contains summary statistics for the 18 sheep.10 Percent change in heart pumping
capacity was measured for each sheep. A positive value corresponds to increased pumping
capacity, which generally suggests a stronger recovery from the heart attack. Is there
evidence for a potential treatment effect of administering stem cells?

n x s
ESCs 9 3.50 5.17
control 9 -4.33 2.76

Table 5.9: Summary statistics of the embryonic stem cell study.
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Figure 5.10: Histograms for both the embryonic stem cell group and the
control group. Higher values are associated with greater improvement.

9Lancet 2005; 366:1005-12
10The data are accessible as the dataset stem.cells in the openintro R package.
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Figure 5.10 shows that the distributions of percent change do not have any prominent
outliers, which would indicate a deviation from normality; this suggests that each sample
mean can be modeled using a t-distribution. Additionally, the sheep in the study are
independent of each other, and the sheep between groups are also independent. Thus, the
t-distribution can be used to model the difference of the two sample means.

Using the t-distribution for a difference in means

The t-distribution can be used for inference when working with the standardized
difference of two means if (1) each sample meets the conditions for using the
t-distribution and (2) the samples are independent.

A confidence interval for a difference of two means has the same basic structure as
previously discussed confidence intervals:

(x1 − x2)± t?df × SE .

The following formula is used to calculate the standard error of x1 − x2. Since σ is
typically unknown, the standard error is estimated by using s in place of σ .

SEx1−x2
=

√
σ2

1
n1

+
σ2

2
n2
≈

√
s21
n1

+
s22
n2
.

In this setting, the t-distribution has a somewhat complicated formula for the degrees
of freedom that is usually calculated with software.11 An alternative approach uses the
smaller of n1 − 1 and n2 − 1 as the degrees of freedom.12

Distribution of a difference of sample means

The sample difference of two means, x1 − x2, can be modeled using the t-
distribution and the standard error

SEx1−x2
=

√
s21
n1

+ s22
n2

(5.8)

when each sample mean can itself be modeled using a t-distribution and the sam-
ples are independent. To calculate the degrees of freedom without using software,
use the smaller of n1 − 1 and n2 − 1.

 Example 5.9 Calculate and interpret a 95% confidence interval for the effect of
ESCs on the change in heart pumping capacity of sheep following a heart attack.

The point estimate for the difference is x1 − x2 = xesc − xcontrol = 7.83.

The standard error is: √
s21
n1

+
s22
n2

=

√
5.172

9
+

2.762

9
= 1.95

11See Section 5.6 for the formula.
12This technique for degrees of freedom is conservative with respect to a Type 1 Error; it is more difficult to

reject the null hypothesis using this approach for degrees of freedom.
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Since n1 = n2 = 9, use df = 8; t?8 = 2.31 for a 95% confidence interval. Alternatively,
computer software can provide more accurate values: df = 12.225, t? = 2.174.

The confidence interval is given by:

(x1 − x2)± t?df × SE → 7.83 ± 2.31× 1.95 → (3.38,12.38)

With 95% confidence, the average amount that ESCs improve heart pumping capac-
ity lies between 3.38% to 12.38%.13 The data provide evidence for a treatment effect
of administering stem cells.

5.3.2 Hypothesis tests for a difference in means

Is there evidence that newborns from mothers who smoke have a different average birth
weight than newborns from mothers who do not smoke? The dataset births contains data
from a random sample of 150 cases of mothers and their newborns in North Carolina over
a year; there are 50 cases in the smoking group and 100 cases in the nonsmoking group.14

fAge mAge weeks weight sexBaby smoke
1 NA 13 37 5.00 female nonsmoker
2 NA 14 36 5.88 female nonsmoker
3 19 15 41 8.13 male smoker
...

...
...

...
...

...
150 45 50 36 9.25 female nonsmoker

Table 5.11: Four cases from the births dataset.

 Example 5.10 Evaluate whether it is appropriate to apply the t-distribution to the
difference in sample means between the two groups.

Since the data come from a simple random sample and consist of less than 10% of
all such cases, the observations are independent. While each distribution is strongly
skewed, the large sample sizes of 50 and 100 allow for the use of the t-distribution to
model each mean separately. Thus, the difference in sample means may be modeled
using a t-distribution.

A hypothesis test can be conducted to evaluate whether there is a relationship be-
tween mother’s smoking status and average newborn birth weight. The null hypothesis
represents the case of no difference between the groups, H0 : µns − µs = 0, where µns rep-
resents the population mean of newborn birthweight for infants with mothers who did
not smoke, and µs represents mean newborn birthweight for infants with mothers who
smoked. Under the alternative hypothesis, there is some difference in average newborn
birth weight between the groups, HA : µns − µs , 0. The hypotheses can also be written as
H0 : µns = µs and HA : µns , µs.

13From software, the confidence interval is (3.58, 12.08).
14This dataset is available in the openintro R package.
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Newborn weights (lbs) from mothers who smoked
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Newborn weights (lbs) from mothers who did not smoke
0 2 4 6 8 10

Figure 5.12: The top panel represents birth weights for infants whose
mothers smoked. The bottom panel represents the birth weights for
infants whose mothers who did not smoke. The distributions exhibit
moderate-to-strong and strong skew, respectively.

Stating hypotheses for two-group data

When testing a hypothesis about two independent groups, directly compare the
two population means and state hypotheses in terms of µ1 and µ2.

– For a two-sided test, H0 : µ1 = µ2; HA : µ1 , µ2.

– For a one-sided test, either H0 : µ1 = µ2; HA : µ1 > µ2 or H0 : µ1 = µ2; HA :
µ1 < µ2.

In this setting, the formula for a t-statistic is:

t =
(x1 − x2)− (µ1 −µ2)

SEx1−x2

=
(x1 − x2)− (µ1 −µ2)√

s21
n1

+
s22
n2

Under the null hypothesis of no difference between the groups, H0 : µ1 − µ2 = 0, the
formula simplifies to

t =
(x1 − x2)√
s21
n1

+
s22
n2

 Example 5.11 Using Table 5.13, conduct a hypothesis test to evaluate whether
there is evidence that newborns from mothers who smoke have a different average
birth weight than newborns from mothers who do not smoke.
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smoker nonsmoker
mean 6.78 7.18
st. dev. 1.43 1.60
samp. size 50 100

Table 5.13: Summary statistics for the births dataset.

The hypotheses are H0 : µ1 = µ2 and HA : µ1 , µ2, where µ1 represents the average
newborn birth weight for nonsmoking mothers and µ2 represents average newborn
birth weight for mothers who smoke. Let α = 0.05.

Calculate the t-statistic:

t =
(x1 − x2)√
s21
n1

+
s22
n2

=
7.18− 6.78√
1.602

100 + 1.432

50

= 1.54

Approximate the degrees of freedom as 50−1 = 49. The t-score of 1.49 falls between
the first and second columns in the df = 49 row of the t-table, so the two-sided
p-value is between 0.10 and 0.20.15

This p-value is larger than the significance value, 0.05, so the null hypothesis not
rejected. There is insufficient evidence to state there is a difference in average birth
weight of newborns from North Carolina mothers who did smoke during pregnancy
and newborns from North Carolina mothers who did not smoke during pregnancy.

5.3.3 The paired test vs. independent group test

In the two-sample setting, students often find it difficult to determine whether a paired
test or an independent group test should be used. The paired test applies only in situa-
tions where there is a natural pairing of observations between groups, such as in the swim
data. Pairing can be obvious, such as the two measurements for each swimmer, or more
subtle, such as measurements of respiratory function in twins, where one member of the
twin pair is treated with an experimental treatment and the other with a control. In the
case of two independent groups, there is no natural way to pair observations.

A common error is to overlook pairing in data and assume that two groups are inde-
pendent. The swimsuit data can be used to illustrate the possible harm in conducting an
independent group test rather than a paired test. In Section 5.2, the paired t-test showed
a significant difference in the swim velocities between swimmers wearing wetsuits versus
regular swimsuits. Suppose the analysis had been conducted without accounting for the
fact that the measurements were paired.

The mean and standard deviation for the 12 wet suit velocities are 1.51 and 0.14
(m/sec), respectively, and 1.43 and 0.14 (m/sec) for the 12 swim suit velocities. A two-
group test statistic is:

t =
1.52− 1.43

√
0.142/12 + 0.142/12

= 1.37

15From R, df = 89.277 and p = 0.138.
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If the degrees of freedom are approximated as 11 = 12 − 1, the two-sided p-value as
calculated from software is 0.20. According to this method, the null hypothesis of equal
mean velocities for the two suit types would not be rejected.

It is not difficult to show that the numerator of the paired test (the average of the
within swimmer differences) and the numerator of the two-group test (the difference of
the average times for the two groups) are identical. The values of the test statistics differ
because the denominators are different—specifically, the standard errors associated with
each statistic are different. For the paired test statistic, the standard error uses the stan-
dard deviation of the within pair differences (0.22) and has value 0.022/

√
12 = 0.006. The

two-group test statistic combines the standard deviations for the original measurements
and has value

√
0.142/12 + 0.142/12 = 0.06. The standard error for the two-group test is

10-fold larger than for the paired test.
This striking difference in the standard errors is caused by the much lower vari-

ability of the individual velocity differences compared to the variability of the original
measurements. Due to the correlation between swim velocities for a single swimmer, the
differences in the two velocity measurements for each swimmer are consistently small,
resulting in low variability. Pairing has allowed for increased precision in estimating the
difference between groups.

The swim suit data illustrates the importance of context, which distinguishes a sta-
tistical problem from a purely mathematical one. While both the paired and two-group
tests are numerically feasible to calculate, without an apparent error, the context of the
problem dictates that the correct approach is to use a paired test.⊙

Guided Practice 5.12 Propose an experimental design for the embryonic stem cell
study in sheep that would have required analysis with a paired t-test.16

5.3.4 Case study: discrimination in developmental disability support

Section 1.7.1 presented an analysis of the relationship between age, ethnicity, and amount
of expenditures for supporting developmentally disabled residents in the state of Cali-
fornia, using the dds.discr dataset. When the variable age is ignored, the expenditures
per consumer is larger on average for White non-Hispanics than Hispanics, but Table 1.53
showed that average differences by ethnicity were much smaller within age cohorts. This
section demonstrates the use of t-tests to conduct a more formal analysis of possible differ-
ences in expenditure by ethnicity, both overall (i.e., ignoring age) and within age cohorts.

Comparing expenditures overall

When ignoring age, expenditures within the ethnicity groups Hispanic and White non-
Hispanic show substantial right-skewing (Figure 1.45). A transformation is advisable be-
fore conducting a t-test. As shown in Figure ??, a natural log transformation effectively
eliminates skewing.

Is there evidence of a difference in mean expenditures by ethnic group? Conduct a
t-test of the null hypothesis H0 : µ1 = µ2 versus the two-sided alternative HA : µ1 , µ2,
where µ1 is the population mean log expenditure in Hispanics and µ2 is the population
mean log expenditure in White non-Hispanics.

16The experiment could have been done on pairs of siblings, with one assigned to the treatment group and
one assigned to the control group. Alternatively, sheep could be matched up based on particular characteristics
relevant to the experiment; for example, sheep could be paired based on similar weight or age. Note that in this
study, a design involving two measurements taken on each sheep would be impractical.
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Figure 5.14: A plot of log(expenditures) by ethnicity.

Ethnicity n x s
1 Hispanic 376 8.56 1.17
2 White non Hispanic 401 9.47 1.35

Table 5.15: Summary statistics for the transformed variable
log(expenditures) in the dds.discr data.

The summary statistics required to calculate the t-statistic are shown in Table 5.15.
The t-statistic for the test is

t =
9.47− 8.56

√
1.352/401 + 1.172/376

= 10.1.

The degrees of freedom of the test can be approximated as 376−1 = 375; the p-value
can be calculated using a normal approximation. Regardless of whether a t or normal
distribution is used, the probability of a test statistic with absolute value larger than 10
is vanishingly small—the p-value is less than 0.001. When ignoring age, there is signif-
icant evidence of a difference in mean expenditures between Hispanics and White non-
Hispanics. It appears that on average, White non-Hispanics receive a higher amount of
developmental disability support from the state of California (x1 < x2).

However, as indicated in Section 1.7.1, this is a misleading result. The analysis as
conducted does not account for the confounding effect of age, which is associated with
both expenditures and ethnicity. As individuals age, they typically require more sup-
port from the government. In this dataset, White non-Hispanics tend to be older than
Hispanics; this difference in age distribution contributes to the apparent difference in ex-
penditures between two groups.

Comparing expenditures within age cohorts

One way to account for the effect of age is to compare mean expenditures within age
cohorts. When comparing individuals of similar ages but different ethnic groups, are the
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differences in mean expenditures larger than would be expected by chance alone?
Table 1.52 shows that the age cohort 13-17 is the largest among the Hispanic con-

sumers, while the cohort 22-50 is the largest among White non-Hispanics. This section
will examine the evidence against the null hypothesis of no difference in mean expendi-
tures within these two cohorts.

Figure 5.16 shows that within both the age cohorts of 13-17 years and 22-50 years,
the distribution of expenditures is reasonably symmetric; there is no need to apply a
transformation before conducting a t-test. The skewing evident when age was ignored is
due to the differing distributions of age within ethnicities.
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Figure 5.16: (a)A plot of expenditures by ethnicity in the age cohort 13 -
17. (b) A plot of expenditures by ethnicity in the age cohort 22 - 50.

Table 5.17 contains the summary statistics for computing the test statistic to compare
expenditures in the two groups within this age cohort. The test statistic has value t =
0.318, with degrees of freedom 66. The two-sided p-value is 0.75. There is not evidence
of a difference between mean expenditures in Hispanics and White non-Hispanics ages
13-17.

Ethnicity n x s
1 Hispanic 103 3955.28 938.82
2 White not Hispanic 67 3904.36 1071.02

Table 5.17: Summary statistics for expenditures, Ages 13-17

The analysis of the age cohort 22 - 50 years shows the same qualitative result. The
t-statistic calculated from the summary statistics in Table 5.18 has value t = 0.659 and
p-value 0.51. Just as in the 13-17 age cohort, there is insufficient evidence to reject the
null hypothesis of no difference between the means.

Ethnicity n x s
1 Hispanic 43 40924.12 6467.09
2 White not Hispanic 133 40187.62 6081.33

Table 5.18: Summary statistics for expenditures, Ages 22 - 50

The inference-based analyses for these two age cohorts support the conclusions reached
through the exploratory approach used in Section 1.7.1—comparing individuals of similar
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ages shows that there are not large differences between mean expenditures for White non-
Hispanics versus Hispanics. An analysis that accounts for age as a confounding variable
does not suggest there is evidence of ethnic discrimination in developmental disability
support provided by the State of California.

5.3.5 Pooled standard deviation estimate (special topic)

Occasionally, two populations will have standard deviations that are so similar that they
can be treated as identical. For example, historical data or a well-understood biological
mechanism may justify this strong assumption. In such cases, it can be more precise to
use a pooled standard deviation to make inferences about the difference in population
means.

The pooled standard deviation of two groups uses data from both samples to es-
timate the common standard deviation and standard error. If there are good reasons to
believe that the population standard deviations are equal, an improved estimate of the
group variances can be obtained by pooling the data from the two groups:

s2pooled =
s21(n1 − 1) + s22(n2 − 1)

n1 +n2 − 2
,

where n1 and n2 are the sample sizes, and s1 and s2 represent the sample standard de-
viations. In this setting, the t-statistic uses s2pooled in place of s21 and s22 in the standard
error formula, and the degrees of freedom for the t−statistic is the sum of the degrees of
freedom for the two sample variances:

df = (n1 − 1) + (n2 − 1) = n1 +n2 − 2.

The t-statistic for testing the null hypothesis of no difference between population means
becomes

t =
x1 − x2

spooled

√
1
n1

+ 1
n2

.

The formula for the two-sided confidence interval for the difference in population
means is

(x1 − x2)± t? × sp

√
1
n1

+
1
n2
,

where t? is the point on a t-distribution with n1 +n2−2 degrees of freedom chosen accord-
ing to the confidence coefficient.

The benefits of pooling the standard deviation are realized through obtaining a better
estimate of the standard deviation for each group and using a larger degrees of freedom
parameter for the t-distribution. Both of these changes may permit a more accurate model
of the sampling distribution of x1 − x2, if the standard deviations of the two groups are
indeed equal. In most applications, however, it is difficult to verify the assumption of
equal population standard deviations, and thus safer to use the methods discussed in
Sections 5.3.1 and 5.3.2.



5.4. POWER CALCULATIONS FOR A DIFFERENCE OF MEANS (SPECIAL TOPIC) 227

5.4 Power calculations for a difference of means
(special topic)

Designing a study often involves many complex issues; perhaps the most important sta-
tistical issue in study design is the choice of an appropriate sample size. The power of a
statistical test is the probability that the test will reject the null hypothesis when the al-
ternative hypothesis is true; sample sizes are chosen to make that probability sufficiently
large, typically between 80% and 90%.

Two competing considerations arise when choosing a sample size. The sample size
should be sufficiently large to allow for important group differences to be detected in a
hypothesis test. Practitioners often use the term ‘detecting a difference’ to mean correctly
rejecting a null hypothesis, i.e., rejecting a null hypothesis when the alternative is true.
If a study is so small that detecting a statistically significant difference is unlikely even
when there are potentially important differences, enrolling participants might be uneth-
ical, since subjects could potentially be exposed to a dangerous experimental treatment.
However, it is also unethical to conduct studies with an overly large sample size, since
more participants than necessary would be exposed to an intervention with uncertain
value. Additionally, collecting data is typically expensive and time consuming; it would
be a waste of valuable resources to design a study with an overly large sample size.

This section begins by illustrating relevant concepts in the context of a hypothetical
clinical trial, where the goal is to calculate a sufficient sample size for being 80% likely
to detect practically important effects.17 Afterwards, formulas are provided for directly
calculating sample size, as well as references to software that can perform the calculations.

5.4.1 Reviewing the concepts of a test

 Example 5.13 A company would like to run a clinical trial with participants whose
systolic blood pressures are between 140 and 180 mmHg. Suppose previously pub-
lished studies suggest that the standard deviation of patient blood pressures will be
about 12 mmHg, with an approximately symmetric distribution.18 What would be
the approximate standard error for xtrmt − xctrl if 100 participants were enrolled in
each treatment group?

The standard error is calculated as follows:

SExtrmt−xctrl
=

√
s2trmt
ntrmt

+
s2ctrl
nctrl

=

√
122

100
+

122

100
= 1.70.

This may be an imperfect estimate of SExtrmt−xctrl
, since the standard deviation es-

timate of 12 mmHg from prior data may not be correct. However, it is sufficient
for getting started, and making an assumption like this is often the only available
option.

17While sample size planning is also important for observational studies, those techniques are not discussed
here.

18In many studies like this one, each participant’s blood pressure would be measured at the beginning and
end of the study, and the outcome measurement for the study would be the average difference in blood pressure
in each of the treatment groups. For this hypothetical study, we assume for simplicity that blood pressure is
measured at only the end of the study, and that the randomization ensures that blood pressures at the beginning
of the study are equal (on average) between the two groups.
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Since the degrees of freedom are greater than 30, the distribution of xtrmt − xctrl will
be approximately normal. Under the null hypothesis, the mean is 0 and the standard
deviation is 1.70 (from the standard error).

−9 −6 −3 0 3 6 9
xtrmt − xctrl

Null distribution

 Example 5.14 For what values of xtrmt − xctrl would the the null hypothesis be re-
jected, using α = 0.05?

If the observed difference is in the far left or far right tail of the null distribution,
there is sufficient evidence to reject the null hypothesis. For α = 0.05, H0 is rejected
if the difference is in the lower 2.5% or upper 2.5% tail:

Lower 2.5%: For the normal model, this is 1.96 standard errors below 0, so any
difference smaller than −1.96× 1.70 = −3.332 mmHg.

Upper 2.5%: For the normal model, this is 1.96 standard errors above 0, so any
difference larger than 1.96× 1.70 = 3.332 mmHg.

The boundaries of these rejection regions are shown below. Note that if the new
treatment is effective, mean blood pressure should be lower in the treatment group
than in the control group; i.e., the difference should be in the lower tail.

−9 −6 −3 0 3 6 9
xtrmt − xctrl

Null distribution

Reject H0
Do not

reject H0
Reject H0

The next step is to perform some hypothetical calculations to determine the proba-
bility of rejecting the null hypothesis if the alternative hypothesis were true.

5.4.2 Computing the power for a 2-sample test

If there is a real effect from an intervention, and the effect is large enough to have practical
value, the probability of detecting that effect is referred to as the power. Power can be
computed for different sample sizes or different effect sizes.

There is no easy way to define when an effect size is large enough to be of value; this
is not a statistical issue. For example, in a clinical trial, the scientifically significant effect
is the incremental value of the intervention that would justify changing current clinical
recommendations from an existing intervention to a new one. In such a setting, the effect
size is usually determined from long discussions between the research team and study
sponsors.
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Suppose that for this hypothetical blood pressure medication study, the researchers
are interested in detecting any effect on blood pressure that is 3 mmHg or larger than the
standard medication. Here, 3 mmHg is the minimum population effect size of interest.

 Example 5.15 Suppose the study proceeded with 100 patients per treatment group
and the new drug does reduce average blood pressure by an additional 3 mmHg
relative to the standard medication. What is the probability of detecting this effect?

Determine the sampling distribution for xtrmt − xctrl when the true difference is
−3 mmHg; this has the same standard deviation of 1.70 as the null distribution, but
the mean is shifted 3 units to the left. Then, calculate the fraction of the distribution
for xtrmt − xctrl that falls within the rejection region for the null distribution.

−9 −6 −3 0 3 6 9
xtrmt − xctrl

Null distributionDistribution with
µtrmt − µctrl = −3

Figure 5.19: The rejection regions are outside of the dotted lines. Recall
that the boundaries for α = 0.05 were calculated to be ±3.332 mmHg.

The probability of being in the left side of the rejection region (x < −3.332) can be
calculated by converting to a Z-score and using either the normal probability table
or statistical software.19

Z =
−3.332− (−3)

1.7
= −0.20 → P (Z ≤ −0.20) = 0.4207

The power for the test is about 42% when µtrmt − µctrl = −3 mm/Hg and each group
has a sample size of 100.

5.4.3 Determining a proper sample size

The last example demonstrated that with a sample size of 100 in each group, there is
a probability of about 0.42 of detecting an effect size of 3 mmHg. If the study were
conducted with this sample size, even if the new medication reduced blood pressure by
3 mmHg compared to the control group, there is a less than 50% chance of concluding that
the medication is beneficial. Studies with low power are often inconclusive, and there are
important reasons to avoid such a situation:

– Participants were subjected to a drug for a study that may have little scientific value.

– The company may have invested hundreds of millions of dollars in developing the
new drug, and may now be left with uncertainty about its potential.

19The probability of being in the right side of the rejection region is negligible and can be ignored.
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– Another clinical trial may need to be conducted to obtain a more conclusive answer
as to whether the drug does hold any practical value, and that would require sub-
stantial time and expense.

To ensure a higher probability of detecting a clinically important effect, a larger sam-
ple size should be chosen. What about a study with 500 patients per group?⊙

Guided Practice 5.16 Calculate the power to detect a change of -3 mmHg using
a sample size of 500 per group. Recall that the standard deviation of patient blood
pressures was expected to be about 12 mmHg.20

(a) Determine the standard error.
(b) Identify the null distribution and rejection regions, as well as the alternative

distribution when µtrmt −µctrl = −3.
(c) Compute the probability of rejecting the null hypothesis.

With a sample size of 500 per group, the power of the test is much larger than neces-
sary. Not only does this lead to a study that would be overly expensive and time consum-
ing, it also exposes more patients than necessary to the experimental drug.

Sample sizes are generally chosen such that power is around 80%, although in some
cases 90% is the target. Other values may be reasonable for a specific context, but 80% and
90% are most commonly chosen as a good balance between high power and limiting the
number of patients exposed to a new treatment (as well as reducing experimental costs).

 Example 5.17 Identify the sample size that would lead to a power of 80%.

The Z-score that defines a lower tail area of 0.80 is about Z = 0.84. In other words,
0.84 standard errors from -3, the mean of the alternative distribution.

−9 −6 −3 0 3 6 9
xtrmt − xctrl

Null distributionDistribution with
µtrmt − µctrl = −3

0.84 SE 1.96 SE

For α = 0.05, the rejection region always extends 1.96 standard errors from 0, the
center of the null distribution.

20(a) The standard error will now be SE =
√

122
500 + 122

500 = 0.76.
(b) The null distribution, rejection boundaries, and alternative distribution are shown below. The rejection
regions are the areas outside the two dotted lines at xtrmt − xctrl ± 0.76× 1.96 = ±1.49.

−9 −6 −3 0 3 6 9
xtrmt − xctrl

Null distributionDistribution with
µtrmt − µctrl = −3

(c) Compute the Z-score and find the tail area, Z = −1.49−(−3)
0.76 = 1.99→ P (Z ≤ 1.99) = 0.9767, which is the power

of the test for a difference of 3 mmHg. With 500 patients per group, the study would be 97.7% likely to detect
an effect size of 3 mmHg.
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The distance between the centers of the null and alternative distributions can be
expressed in terms of the standard error:

(0.84× SE) + (1.96× SE) = 2.8× SE.

This quantity necessarily equals the minimum effect size of interest, 3 mmHg, which
is the distance between -3 and 0. It is then possible to solve for n:

3 = 2.8× SE

3 = 2.8×

√
122

n
+

122

n

n =
2.82

32 ×
(
122 + 122

)
= 250.88

The study should enroll at least 251 patients per group for 80% power. Note that
sample size should always be rounded up in order to achieve the desired power.
Even if the calculation had yielded a number closer to 250 (e.g., 250.25), the study
should still enroll 251 patients per grou, since having 250 patients per group would
result in a power lower than 80%.⊙
Guided Practice 5.18 Suppose the targeted power is 90% and α = 0.01. How many
standard errors should separate the centers of the null and alternative distributions,
where the alternative distribution is centered at the minimum effect size of interest?
Assume the test is two-sided.21

Figure 5.20 shows the power for sample sizes from 20 participants to 5,000 partic-
ipants when α = 0.05 and the true difference is -3 mmHg. While power increases with
sample size, having more than 250-300 participants provides little additional value to-
wards detecting an effect.

Sample Size Per Group

P
ow

er

20 50 100 200 500 1000 2000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.20: The curve shows the power for different sample sizes in the
context of the blood pressure example when the true difference is -3.

21Find the Z-score such that 90% of the distribution is below it: Z = 1.28. Next, find the cutoffs for the
rejection regions: ±2.58. Thus, the centers of the null and alternative distributions should be about 1.28 +2.58 =
3.86 standard errors apart.
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5.4.4 Formulas for power and sample size

The previous sections have illustrated how power and sample size can be calculated from
first principles, using the fundamental ideas behind distributions and testing. In practice,
power and sample size calculations are so important that statistical software should be the
method of choice; there are many commercially available and public domain programs
for performing such calculations. However, hand calculations using formulas can provide
quick estimates in the early stages of planning a study.

Use the following formula to calculate sample size for comparing two means, assum-
ing each group will have n participants:

n =
(σ2

1 + σ2
2 )(z1−α/2 + z1−β)2

∆2 .

In this formula:

– µ1,µ2,σ1, and σ2 are the population means and standard deviations of the two groups.

– ∆ = µ1 −µ2 is the minimally important difference that investigators wish to detect.

– The null and alternative hypotheses are H0 : ∆ = 0 (i.e., no difference between the
means) and HA : ∆ , 0, i.e., a two-sided alternative.

– The two-sided significance level is α, and z1−α/2 is the point on a standard normal
distribution with area 1−α/2 to its left and α/2 area to its right.

– β is the probability of incorrectly failing to reject H0 for a specified value of ∆; 1− β
is the power. The value z1−β is the point on a standard normal distribution with area
1− β to its left.

For a study with sample size n per group, where Z is a normal random variable with
mean 0 and standard deviation 1, power is given by:

Power = P

Z < −z1−α/2 +
∆√

σ2
1 /n+ σ2

2 /n

 .
These formulas could have been used to do the earlier power and sample size calcu-

lations for the hypothetical study of blood pressure lowering medication. To calculate the
sample size needed for 80% power in detecting a change of 3 mmHg, α = 0.05, 1−β = 0.80,
∆ = 3 mmHg, and σ1 = σ2 = 12 mmHg. The formula yields a sample size n per group of

n =
(122 + 122)(1.96 + 0.84)2

(−3.0)2 = 250.88,

which can be rounded up to 251.
The formula for power can be used to verify the sample size of 251:

Power = P
(
Z < −1.96 +

3
√

122/251 + 122/251

)
= P (Z < 1.25)

= 0.85.

The calculated power is slightly larger than 80% because of the rounding to 251.
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The sample size calculations done before any data are collected are one of the most
critical aspects of conducting a study. If an analysis is done incorrectly, it can be redone
once the error is discovered. However, if data were collected for a sample size that is
either too large or too small, it can be impossible to correct the error, especially in studies
with human subjects. As a result, sample size calculations are nearly always done using
software. For two-sample t-tests, the R function power.t.test is both freely available and
easy to use.
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5.5 Comparing means with ANOVA (special topic)

In some settings, it is useful to compare means across several groups. It might be tempt-
ing to do pairwise comparisons between groups; for example, if there are three groups
(A,B,C), why not conduct three separate t-tests (A vs. B, A vs. C, B vs. C)? Conducting
multiple tests on the same data increases the rate of Type I error, making it more likely
that a difference will be found by chance, even if there is no difference among the popu-
lation means. Multiple testing is discussed further in Section 5.5.3.

Instead, the methodology behind a t-test can be generalized to a procedure called
analysis of variance (ANOVA), which uses a single hypothesis test to assess whether the
means across several groups are equal. Strong evidence favoring the alternative hypothe-
sis in ANOVA is described by unusually large differences among the group means.

H0: The mean outcome is the same across all k groups. In statistical notation, µ1 = µ2 =
· · · = µk where µi represents the mean of the outcome for observations in category i.

HA: At least one mean is different.

There are three conditions on the data that must be checked before performing ANOVA:
1) observations are independent within and across groups, 2) the data within each group
are nearly normal, and 3) the variability across the groups is about equal.

 Example 5.19 Examine Figure 5.21. Compare groups I, II, and III. Is it possible to
visually determine if the differences in the group centers is due to chance or not?
Now compare groups IV, V, and VI. Do the differences in these group centers appear
to be due to chance?
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Figure 5.21: Side-by-side dot plot for the outcomes for six groups.

It is difficult to discern a difference in the centers of groups I, II, and III, because the
data within each group are quite variable relative to any differences in the average
outcome. However, there appear to be differences in the centers of groups IV, V, and
VI. For instance, group V appears to have a higher mean than that of the other two
groups. The differences in centers for groups IV, V, and VI are noticeable because
those differences are large relative to the variability in the individual observations
within each group.
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5.5.1 Analysis of variance (ANOVA) and the F-test

The famuss dataset was introduced in Chapter 1, Section 1.2.2. In the FAMuSS study,
researchers examined the relationship between muscle strength and genotype at a location
on the ACTN3 gene. The measure for muscle strength is percent change in strength in the
non-dominant arm (ndrm.ch). Is there a difference in muscle strength across the three
genotype categories (CC, CT, TT)?⊙

Guided Practice 5.20 The null hypothesis under consideration is the following:
µCC = µCT = µTT. Write the null and corresponding alternative hypotheses in plain
language.22

Table 5.22 provides summary statistics for each group. A side-by-side boxplot for
the change in non-dominant arm strength is shown in Figure 5.23; Figure 5.24 shows
the Q-Q plots by each genotype. Notice that the variability appears to be approximately
constant across groups; nearly constant variance across groups is an important assump-
tion that must be satisfied for using ANOVA. Based on the Q-Q plots, there is evidence
of moderate right skew; the data does not follow a normal distribution very closely, but
could be considered to ’loosely’ follow a normal distribution.23 It is reasonable to assume
that the observations are independent within and across groups; it is unlikely that partic-
ipants in the study were related, or that data collection was carried out in a way that one
participant’s change in arm strength could influence another’s.

CC CT TT

Sample size (ni ) 173 261 161
Sample mean (x̄i ) 48.89 53.25 58.08
Sample SD (si ) 29.96 33.23 35.69

Table 5.22: Summary statistics of change in non-dominant arm strength,
split by genotype.

 Example 5.21 The largest difference between the sample means is between the CC
and TT groups. Consider again the original hypotheses:

H0: µCC = µCT = µTT
HA: The average percent change in non-dominant arm strength (µi) varies across

some (or all) groups.

Why might it be inappropriate to run the test by simply estimating whether the
difference of µCC and µTT is statistically significant at a 0.05 significance level?

It is inappropriate to informally examine the data and decide which groups to for-
mally test. This is a form of data fishing; choosing the groups with the largest
differences for the formal test will lead to an increased chance of incorrectly reject-
ing the null hypothesis (i.e., an inflation in the Type I error rate). Instead, all the
groups should be tested using a single hypothesis test.

22H0: The average percent change in non-dominant arm strength is equal across the three genotypes. HA:
The average percent change in non-dominant arm strength varies across some (or all) groups.

23In a more advanced course, it can be shown that the ANOVA procedure still holds with deviations from
normality when sample sizes are moderately large. Additionally, a more advanced course would discuss appro-
priate transformations to induce normality.
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Figure 5.23: Side-by-side box plot of the change in non-dominant arm
strength for 595 participants across three groups.
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Figure 5.24: Q-Q plots of the change in non-dominant arm strength for
595 participants across three groups.
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Analysis of variance focuses on answering one question: is the variability in the sam-
ple means large enough that it seems unlikely to be from chance alone? The variation
between groups is referred to as the mean square between groups (MSG); the MSG is
a measure of how much each group mean varies from the overall mean. Let x represent
the mean of outcomes across all groups, where xi is the mean of outcomes in a particular
group i and ni is the sample size of group i. The mean square between groups is:

MSG =
1

k − 1

k∑
i=1

ni (xi − x)2 =
1

dfG
SSG,

where SSG is the sum of squares between groups,
∑k
i=1ni (xi − x)2, and dfG = k − 1

is the degrees of freedom associated with the MSG when there are k groups.
Under the null hypothesis, any observed variation in group means is due to chance

and there is no real difference between the groups. In other words, the null hypothesis
assumes that the groupings are non-informative, such that all observations can be thought
of as belonging to a single group. If this scenario is true, then it is reasonable to expect
that the variability between the group means should be equal to the variability observed
within a single group. The mean square error (MSE) is a pooled variance estimate with
associated degrees of freedom dfE = n−k that provides a measure of variability within the
groups. tThe mean square error is computed as:

MSE =
1

n− k

k∑
i=1

(ni − 1)s2i =
1

dfE
SSE,

where the SSE is the sum of squared errors, ni is the sample size of group i, and si
is the standard deviation of group i.

Under the null hypothesis that all the group means are equal, any differences among
the sample means are only due to chance; thus, the MSG and MSE should also be equal.
ANOVA is based on comparing the MSG and MSE. The test statistic for ANOVA, the
F-statistic, is the ratio of the between-group variability to the within-group variability:

F =
MSG
MSE

(5.22)

 Example 5.23 Calculate the F-statistic for the famuss data summarized in Table 5.22.
The overall mean x across all observations is 53.29.

First, calculate the MSG and MSE.

MSG =
1

k − 1

k∑
i=1

ni (x̄i − x̄)2

=
1

3− 1
[(173)(48.89− 53.29)2 + (261)(53.25− 53.29)2 + (161)(58.08− 53.29)2]

=3521.69

MSE =
1

n− k

k∑
i=1

(ni − 1)s2i

=
1

595− 3
[(173− 1)(29.962) + (261− 1)(33.232) + (161− 1)(35.692)]

=1090.02
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The F-statistic is the ratio:

MSG
MSE

=
3521.69
1090.02

= 3.23

A p-value can be computed from the F-statistic using an F distribution, which has
two associated parameters: df1 and df2. For the F statistic in ANOVA, df1 = dfG and
df2 = dfE . An F distribution with 2 and 592 degrees of freedom, corresponding to the F
statistic for the genotype and muscle strength hypothesis test, is shown in Figure 5.25.

0 1 2 3 4 5 6

Figure 5.25: An F distribution with df1 = 2 and df2 = 592. The tail area
greater than F = 3.23 is shaded.

The larger the observed variability in the sample means (MSG) relative to the within-
group variability (MSE), the larger F will be. Larger values of F represent stronger evi-
dence against the null hypothesis. The upper tail of the distribution is used to compute a
p-value, which is typically done using statistical software.

 Example 5.24 The p-value corresponding to the test statistic is equal to about 0.04.
Does this provide strong evidence against the null hypothesis at significance level
α = 0.05?

The p-value is smaller than 0.05, indicating the evidence is strong enough to reject
the null hypothesis at a significance level of 0.05. The data suggest that average
change in strength in the non-dominant arm varies by participant genotype.

The F-statistic and the F test

Analysis of variance (ANOVA) is used to test whether the mean outcome differs
across two or more groups. ANOVA uses a test statistic F, which represents a
standardized ratio of variability in the sample means relative to the variability
within the groups. If H0 is true and the model assumptions are satisfied, the
statistic F follows an F distribution with parameters df1 = k − 1 and df2 = n − k.
The upper tail of the F distribution is used to calculate the p-value.

5.5.2 Reading an ANOVA table from software

The calculations required to perform an ANOVA by hand are tedious and prone to human
error. Instead, it is common to use statistical software to calculate the F-statistic and
associated p-value. The results of an ANOVA can be summarized in a table similar to that
of a regression summary, which will be discussed in Chapters 6 and 7.
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Table 5.26 shows an ANOVA summary to test whether the mean change in non-
dominant arm strength varies by genotype. Many of these values should look familiar;
in particular, the F-statistic and p-value can be retrieved from the last two columns.

Df Sum Sq Mean Sq F value Pr(>F)
famuss$actn3.r577x 2 7043 3522 3.231 0.0402
Residuals 592 645293 1090

Table 5.26: ANOVA summary for testing whether the mean change in non-
dominant arm strength varies by genotype at the actn3.r577x location on
the ACTN3 gene.

5.5.3 Multiple comparisons and controlling Type I Error rate

Rejecting the null hypothesis in an ANOVA analysis only allows for a conclusion that
there is evidence for a difference in group means. In order to identify the groups with
different means, it is necessary to perform further testing. For example, in the famuss
analysis, there are three comparisons to make: CC to CT, CC to TT, and CT to TT. While these
comparisons can be made using two sample t-tests, it is important to control the Type
I error rate. One of the simplest ways to reduce the overall probability of identifying a
significant difference by chance in a multiple comparisons setting is to use the Bonferroni
correction procedure.

In the Bonferroni correction procedure, the p-value from a two-sample t-test is com-
pared to a modified significance level, α? ; α? = α/K , where K is the total number of
comparisons being considered. For k groups, K = k(k−1)

2 . When calculating the t-statistic,
use the pooled estimate of standard deviation between groups (which equals

√
MSE); to

calculate the p-value, use a t distribution with df2. It is typically more convenient to do
these calculations using software.

Bonferroni correction

The Bonferroni correction suggests that a more stringent significance level is
appropriate when conducting multiple tests:

α? = α/K

where K is the number of comparisons being considered. For k groups, K = k(k−1)
2 .

 Example 5.25 The ANOVA conducted on the famuss dataset showed strong evi-
dence of differences in the mean strength change in the non-dominant arm between
the three genotypes. Complete the three possible pairwise comparisons using the
Bonferroni correction and report any differences.

Use a modified significance level of α? = 0.05/3 = 0.0167. The pooled estimate of
the standard deviation is

√
MSE =

√
1090.02 = 33.02.

Genotype CC versus Genotype CT:
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t =
x1 − x2

spooled

√
1
n1

+ 1
n2

=
48.89− 53.25

33.02
√

1
173 + 1

261

= −1.35

This results in a p-value of 0.18 on df = 592. This p-value is larger than αstar =
0.0167, so there is not evidence of a difference in the means of genotypes CC and CT.

Genotype CC versus Genotype TT:

t =
x1 − x2

spooled

√
1
n1

+ 1
n2

=
48.89− 58.08

33.02
√

1
173 + 1

161

= −2.54

This results in a p-value of 0.011 on df = 592. This p-value is smaller than α? =
0.0167, so there is evidence of a difference in the means of genotypes CC and TT.

Genotype CT versus Genotype TT:

t =
x1 − x2

spooled

√
1
n1

+ 1
n2

=
53.25− 58.08

33.02
√

1
261 + 1

161

= −1.46

This results in a p-value of 0.145 on df = 592. This p-value is larger than α? =
0.0167, so there is not evidence of a difference in the means of genotypes CT and TT.

In summary, the mean percent strength change in the non-dominant arm for geno-
type CT individuals is not statistically distinguishable from those of genotype CC and
TT individuals. However, there is evidence that mean percent strength change in the
non-dominant arm differs between individuals of genotype CC and TT are different.
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5.6 Notes

The material in this chapter is particularly important. For many applications, t-tests and
Analysis of Variance (ANOVA) are an essential part of the core of statistics in medicine
and the life sciences. The comparison of two or more groups is often the primary aim of
experiments both in the laboratory and in studies with human subjects. More generally,
the approaches to interpreting and drawing conclusions from testing demonstrated in this
chapter are used throughout the rest of the text and, indeed, in much of statistics.

While it is important to master the details of the techniques of testing for differ-
ences in two or more groups, it is even more critical to not lose sight of the fundamental
principles behind the tests. A statistically significant difference in group means does not
necessarily imply that group membership is the reason for the observed association. A sig-
nificant association does not necessarily imply causation, even if it is highly significant;
confounding variables may be involved. In most cases, causation can only be inferred in
controlled experiments when interventions have been assigned randomly. It is also essen-
tial to carefully consider the context of a problem. For instance, students often find the
distinction between paired and independent group comparisons confusing; understand-
ing the problem context is the only reliable way to choose the correct approach.

It is generally prudent to use the form of the t-test that does not assume equal stan-
dard deviations, but the power calculations described in Section ?? assume models with
equal standard deviations. The formulas are simpler when standard deviations are equal,
and software is more widely available for that case. The differences in sample sizes are
usually minor and less important than assumptions about target differences or the values
of the standard deviations. If the standard deviations are expected to be very different,
then more specialized software for computing sample size and power should be used. The
analysis done after the study has been completed should then use the t-test for unequal
standard deviations.

Tests for significant differences are sometimes overused in science, with not enough
attention paid to estimates and confidence intervals. Confidence intervals for the differ-
ence of two population means show a range of underlying differences in means that are
consistent with the data, and often lead to insights not possible from only the test statistic
and p-value. Wide confidence intervals may show that a non-significant test is the re-
sult of high variability in the test statistic, perhaps caused by a sample size that was too
small. Conversely, a highly significant p-value may be the result of such a large sample
size that the observed differences are not scientifically meaningful; that may be evident
from confidence intervals with very narrow width.

Finally, the formula used to approximate degrees of freedom ν for the independent
two-group t-test that does not assume equal variance is

ν =

[
(s21/n1) + (s22/n2)

]2[
(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)

] ,
where n1, s1 are the sample size and standard deviation for the first sample, and n2, s2
are the corresponding values for the second sample. Since ν is routinely provided in the
output from statistical software, there is rarely any need to calculate it by hand. The
approximate formula df = min(n1 − 1,n2 − 1) always produces a smaller value for degrees
of freedom and hence a larger p-value.

The labs for this chapter are structured around particularly important problems in
practice: comparing two groups, such as a treatment and control group (Lab 1); assessing
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before starting a study whether a sample size is large enough to make it likely that impor-
tant differences will be detected (Lab 2); comparing more than two groups using analysis
of variance (Lab 3); controlling error rates when looking at many comparisons in a dataset
(Lab 4); and thinking about hypothesis testing in the larger context of reproducibility (Lab
5). The first four labs provide guidance on how to conduct and interpret specific types of
analyses. Students may find the last lab particularly useful in understanding the distinc-
tion between a p-value and other probabilities relevant in an inferential setting, such as
power.
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5.7 Exercises

5.7.1 One-sample means with the t-distribution
5.1 Identify the critical t. An independent random sample is selected from an approximately
normal population with unknown standard deviation. Find the degrees of freedom and the critical
t-value (t? ) for the given sample size and confidence level.
(a) n = 6, CL = 90%
(b) n = 21, CL = 98%
(c) n = 29, CL = 95%
(d) n = 12, CL = 99%

5.2 Find the p-value, Part I. An independent random sample is selected from an approximately
normal population with an unknown standard deviation. Find the p-value for the given set of
hypotheses and T test statistic. Also determine if the null hypothesis would be rejected at α = 0.05.
(a) HA : µ > µ0, n = 11, T = 1.91
(b) HA : µ < µ0, n = 17, T = −3.45
(c) HA : µ , µ0, n = 7, T = 0.83
(d) HA : µ > µ0, n = 28, T = 2.13

5.3 Find the p-value, Part II. An independent random sample is selected from an approximately
normal population with an unknown standard deviation. Find the p-value for the given set of
hypotheses and T test statistic. Also determine if the null hypothesis would be rejected at α = 0.01.

(a) HA : µ > 0.5, n = 26, T = 2.485
(b) HA : µ < 3, n = 18, T = 0.5

5.4 Working backwards, Part I. A 95% confidence interval for a population mean, µ, is given as
(18.985, 21.015). This confidence interval is based on a simple random sample of 36 observations.
Calculate the sample mean and standard deviation. Assume that all conditions necessary for infer-
ence are satisfied. Use the t-distribution in any calculations.

5.5 Working backwards, Part II. A 90% confidence interval for a population mean is (65, 77).
The population distribution is approximately normal and the population standard deviation is un-
known. This confidence interval is based on a simple random sample of 25 observations. Calculate
the sample mean, the margin of error, and the sample standard deviation.

5.6 Sleep habits of New Yorkers. New York is known as “the city that never sleeps". A random
sample of 25 New Yorkers were asked how much sleep they get per night. Statistical summaries of
these data are shown below. Do these data provide strong evidence that New Yorkers sleep less than
8 hours a night on average?

n x̄ s min max
25 7.73 0.77 6.17 9.78

(a) Write the hypotheses in symbols and in words.
(b) Check conditions, then calculate the test statistic, T , and the associated degrees of freedom.
(c) Find and interpret the p-value in this context. Drawing a picture may be helpful.
(d) What is the conclusion of the hypothesis test?
(e) If you were to construct a 90% confidence interval that corresponded to this hypothesis test,

would you expect 8 hours to be in the interval?

5.7 Fuel efficiency of Prius. Fueleconomy.gov, the official US government source for fuel economy
information, allows users to share gas mileage information on their vehicles. The histogram below
shows the distribution of gas mileage in miles per gallon (MPG) from 14 users who drive a 2012
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Toyota Prius. The sample mean is 53.3 MPG and the standard deviation is 5.2 MPG. Note that these
data are user estimates and since the source data cannot be verified, the accuracy of these estimates
are not guaranteed.24
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(a) We would like to use these data to evaluate the average gas mileage of all 2012 Prius drivers.
Do you think this is reasonable? Why or why not?

(b) The EPA claims that a 2012 Prius gets 50 MPG (city and highway mileage combined). Do
these data provide strong evidence against this estimate for drivers who participate on fuele-
conomy.gov? Note any assumptions you must make as you proceed with the test.

(c) Calculate a 95% confidence interval for the average gas mileage of a 2012 Prius by drivers who
participate on fueleconomy.gov.

5.8 Find the mean. You are given the following hypotheses:

H0 : µ = 60

HA : µ < 60

We know that the sample standard deviation is 8 and the sample size is 20. For what sample mean
would the p-value be equal to 0.05? Assume that all conditions necessary for inference are satisfied.

5.9 t? vs. z? . For a given confidence level, t?df is larger than z? . Explain how t∗df being slightly
larger than z∗ affects the width of the confidence interval.

5.10 Auto exhaust and lead exposure. Researchers interested in lead exposure due to car exhaust
sampled the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes
while working traffic enforcement in a primarily urban environment. The blood samples of these
officers had an average lead concentration of 124.32 µg/l and a SD of 37.74 µg/l; a previous study
of individuals from a nearby suburb, with no history of exposure, found an average blood level
concentration of 35 µg/l.25

(a) Write down the hypotheses that would be appropriate for testing if the police officers appear to
have been exposed to a higher concentration of lead.

(b) Explicitly state and check all conditions necessary for inference on these data.
(c) Test the hypothesis that the downtown police officers have a higher lead exposure than the

group in the previous study. Interpret your results in context.
(d) Based on your preceding result, without performing a calculation, would a 99% confidence

interval for the average blood concentration level of police officers contain 35 µg/l?

5.11 Car insurance savings. A market researcher wants to evaluate car insurance savings at a
competing company. Based on past studies he is assuming that the standard deviation of savings is
$100. He wants to collect data such that he can get a margin of error of no more than $10 at a 95%
confidence level. How large of a sample should he collect?

24data:prius.
25Mortada:2000.
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5.7.2 Paired data
5.12 Paired or not, Part I. In each of the following scenarios, determine if the data are paired.

(a) Compare pre- (beginning of semester) and post-test (end of semester) scores of students.
(b) Assess gender-related salary gap by comparing salaries of randomly sampled men and women.
(c) Compare artery thicknesses at the beginning of a study and after 2 years of taking Vitamin E

for the same group of patients.
(d) Assess effectiveness of a diet regimen by comparing the before and after weights of subjects.

5.13 Paired or not, Part II. In each of the following scenarios, determine if the data are paired.

(a) We would like to know if Intel’s stock and Southwest Airlines’ stock have similar rates of return.
To find out, we take a random sample of 50 days, and record Intel’s and Southwest’s stock on
those same days.

(b) We randomly sample 50 items from Target stores and note the price for each. Then we visit
Walmart and collect the price for each of those same 50 items.

(c) A school board would like to determine whether there is a difference in average SAT scores for
students at one high school versus another high school in the district. To check, they take a
simple random sample of 100 students from each high school.

5.14 Global warming, Part I. Is there strong evidence of global warming? Let’s consider a small
scale example, comparing how temperatures have changed in the US from 1968 to 2008. The daily
high temperature reading on January 1 was collected in 1968 and 2008 for 51 randomly selected
locations in the continental US. Then the difference between the two readings (temperature in 2008
- temperature in 1968) was calculated for each of the 51 different locations. The average of these 51
values was 1.1 degrees with a standard deviation of 4.9 degrees.

(a) Do these data provide strong evidence of temperature warming in the continental US? Conduct
a hypothesis test; interpret your conclusions in context.

(b) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the temperature measurements from 1968 and 2008 to include 0?
Explain your reasoning.

5.15 High School and Beyond, Part I. The National Center of Education Statistics conducted a
survey of high school seniors, collecting test data on reading, writing, and several other subjects.
Here we examine a simple random sample of 200 students from this survey. Side-by-side box plots
of reading and writing scores as well as a histogram of the differences in scores are shown below.
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(a) Is there a clear difference in the average reading and writing scores?
(b) Are the reading and writing scores of each student independent of each other?
(c) The average observed difference in scores is x̄read−write = −0.545, and the standard deviation

of the differences is 8.887 points. Do these data provide convincing evidence of a difference
between the average scores on the two exams? Conduct a hypothesis test; interpret your conclu-
sions in context.
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(d) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the reading and writing scores to include 0? Explain your reasoning.

5.16 Global warming, Part II. We considered the differences between the temperature readings in
January 1 of 1968 and 2008 at 51 locations in the continental US in Exercise 5.14. The mean and
standard deviation of the reported differences are 1.1 degrees and 4.9 degrees.

(a) Calculate a 90% confidence interval for the average difference between the temperature mea-
surements between 1968 and 2008.

(b) Interpret this interval in context.
(c) Does the confidence interval provide convincing evidence that the temperature was higher in

2008 than in 1968 in the continental US? Explain.

5.17 High school and beyond, Part II. We considered the differences between the reading and
writing scores of a random sample of 200 students who took the High School and Beyond Survey
in Exercise 5.15. The mean and standard deviation of the differences are x̄read−write = −0.545 and
8.887 points.

(a) Calculate a 95% confidence interval for the average difference between the reading and writing
scores of all students.

(b) Interpret this interval in context.
(c) Does the confidence interval provide convincing evidence that there is a real difference in the

average scores? Explain.

5.18 Gifted children. Researchers collected a simple random sample of 36 children who had been
identified as gifted in a large city. The following histograms show the distributions of the IQ scores
of mothers and fathers of these children. Also provided are some sample statistics.26
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Mother Father Diff.
Mean 118.2 114.8 3.4

SD 6.5 3.5 7.5
n 36 36 36

(a) Are the IQs of mothers and the IQs of fathers in this data set related? Explain.
(b) Conduct a hypothesis test to evaluate if the scores are equal on average. Make sure to clearly

state your hypotheses, check the relevant conditions, and state your conclusion in the context
of the data.

5.19 DDT exposure. Suppose that you are interested in determining whether exposure to the
organochloride DDT, which has been used extensively as an insecticide for many years, is associated
with breast cancer in women. As part of a study that investigated this issue, blood was drawn from
a sample of women diagnosed with breast cancer over a six-year period and a sample of healthy
control subjects matched to the cancer patients on age, menopausal status, and date of blood do-
nation. Each woman’s blood level of DDE (an important byproduct of DDT in the human body)

26Graybill:1994.
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was measured, and the difference in levels for each patient and her matched control calculated. A
sample of 171 such differences has mean d = 2.7 ng/mL and standard deviation sd = 15.9 ng/mL.
Differences were calculated as DDEcancer −DDEcontrol .

(a) Test the null hypothesis that the mean blood levels of DDE are identical for women with breast
cancer and for healthy control subjects. What do you conclude?

(b) Would you expect a 95% confidence interval for the true difference in population mean DDE
levels to contain the value 0?

5.20 Blue-green eggshells. It is hypothesized that the blue-green color of the eggshells of many
avian species represents an informational signal as to the health of the female that laid the eggs.
To investigate this hypothesis, researchers conducted a study in which birds assigned to the treat-
ment group were provided with supplementary food before and during laying; they predict that
if eggshell coloration is related to female health at laying, females given supplementary food will
lay more intensely blue-green eggs than control females. Nests were paired according to when nest
construction began, and the study examined 16 nest pairs.

JV: fix these two questions, worded as independent!

(a) The blue-green chroma (BGC) of eggs was measured on the day of laying; BGC refers to the
proportion of total reflectance that is in the blue-green region of the spectrum, with a higher
value representing a deeper blue-green color. In the food supplemented group, BGC chroma
had x = 0.594 and s = 0.010; in the control group, BGC chroma had x = 0.586 and s = 0.009. Is
there evidence that eggshell coloration is different between the treatment and control gsroups?

(b) In general, healthier birds are also known to lay heavier eggs. Egg mass was also measured
for both groups. In the food supplemented group, egg mass was normally distributed with
x = 1.70 grams and s = 0.11 grams; in the control group, egg mass was normally distributed
with x = 0.586 grams and s = 0.009 grams. Do the results of the study suggest that the birds
in the food supplemented group were healthier than those in the control group? Conduct a
hypothesis test and construct a confidence interval; summarize your findings.

5.7.3 Difference of two means

5.21 Cleveland vs. Sacramento. Average income varies from one region of the country to another,
and it often reflects both lifestyles and regional living expenses. Suppose a new graduate is consid-
ering a job in two locations, Cleveland, OH and Sacramento, CA, and he wants to see whether the
average income in one of these cities is higher than the other. He would like to conduct a hypothesis
test based on two small samples from the 2000 Census, but he first must consider whether the con-
ditions are met to implement the test. Below are histograms for each city. Should he move forward
with the hypothesis test? Explain your reasoning.
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5.22 Egg volume. In a study examining 131 collared flycatcher eggs, researchers measured various
characteristics in order to study their relationship to egg size (assayed as egg volume, inmm3). These
characteristics included nestling sex and survival. A single pair of collared flycatchers generally lays
around 6 eggs per breeding season; laying order of the eggs was also recorded.

(a) Is there evidence at the α = 0.10 significance level to suggest that egg size differs between male
and female chicks? If so, do heavier eggs tend to contain males or females? For male chicks,
x = 1619.95, s = 127.54, and n = 80. For female chicks, x = 1584.20, s = 102.51, and n = 48. Sex
was only recorded for eggs that hatched.

(b) Construct a 95% confidence interval for the difference in egg size between chicks that success-
fully fledged (developed capacity to fly) and chicks that died in the nest. From the interval, is
there evidence of a size difference in eggs between these two groups? For chicks that fledged,
x = 1605.87, s = 126.32, and n = 89. For chicks that died in the nest, x = 1606.91, s = 103.46,
n = 42.

(c) Are eggs that are laid first a significantly different size compared to eggs that are laid sixth? For
eggs laid first, x = 1581.98, s = 155.95, and n = 22. For eggs laid sixth, x = 1659.62, s = 124.59,
and n = 20.

5.23 Avian influenza. In recent years, widespread outbreaks of avian influenza have posed a
global threat to both poultry production and human health. One strategy being explored by re-
searchers involves developing chickens that are genetically resistant to infection. In 2011, a team of
investigators reported in Science that they had successfully generated transgenic chickens that are
resistant to the virus. As a part of assessing whether the genetic modification might be hazardous
to the health of the chicks, hatch weights between transgenic chicks and non-transgenic chicks were
collected. Does the following data suggest that there is a difference in hatch weights between trans-
genic and non-transgenic chickens?

transgenic chicks (g) non-transgenic chicks (g)
x̄ 45.14 44.99
s 3.32 4.57
n 54 54

5.24 Diamond prices. A diamond’s price is determined by various measures of quality, including
carat weight. The price of diamonds increases as carat weight increases. While the difference be-
tween the size of a 0.99 cart diamond and a 1 carat diamond is undetectable to the human eye, the
price difference can be substantial.27

27ggplot2.
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(a) Use the data to assess whether there is a difference between the average standardized prices of
0.99 and 1 carat diamonds.

(b) Construct a 95% confidence interval for the average difference between the standardized prices
of 0.99 and 1 carat diamonds.

5.25 Chicken diet and weight, Part I. Chicken farming is a multi-billion dollar industry, and any
methods that increase the growth rate of young chicks can reduce consumer costs while increas-
ing company profits, possibly by millions of dollars. An experiment was conducted to measure
and compare the effectiveness of various feed supplements on the growth rate of chickens. Newly
hatched chicks were randomly allocated into six groups, and each group was given a different feed
supplement. Below are some summary statistics from this data set along with box plots showing
the distribution of weights by feed type.28
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Mean SD n
casein 323.58 64.43 12
horsebean 160.20 38.63 10
linseed 218.75 52.24 12
meatmeal 276.91 64.90 11
soybean 246.43 54.13 14
sunflower 328.92 48.84 12

(a) Describe the distributions of weights of chickens that were fed linseed and horsebean.

(b) Do these data provide strong evidence that the average weights of chickens that were fed linseed
and horsebean are different? Use a 5% significance level.

(c) What type of error might we have committed? Explain.

(d) Would your conclusion change if we used α = 0.01?

5.26 Fuel efficiency of manual and automatic cars, Part I. Each year the US Environmental Pro-
tection Agency (EPA) releases fuel economy data on cars manufactured in that year. Below are
summary statistics on fuel efficiency (in miles/gallon) from random samples of cars with manual
and automatic transmissions manufactured in 2012. Do these data provide strong evidence of a
difference between the average fuel efficiency of cars with manual and automatic transmissions in
terms of their average city mileage? Assume that conditions for inference are satisfied.29

28data:chickwts.
29data:epaMPG.
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5.27 Chicken diet and weight, Part II. Casein is a common weight gain supplement for humans.
Does it have an effect on chickens? Using data provided in Exercise 5.25, test the hypothesis that the
average weight of chickens that were fed casein is different than the average weight of chickens that
were fed soybean. If your hypothesis test yields a statistically significant result, discuss whether
or not the higher average weight of chickens can be attributed to the casein diet. Assume that
conditions for inference are satisfied.

5.28 Fuel efficiency of manual and automatic cars, Part II. The table provides summary statistics
on highway fuel economy of cars manufactured in 2012 (from Exercise 5.26). Use these statistics to
calculate a 98% confidence interval for the difference between average highway mileage of manual
and automatic cars, and interpret this interval in the context of the data.30
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5.29 Gaming and distracted eating. A group of researchers are interested in the possible effects
of distracting stimuli during eating, such as an increase or decrease in the amount of food con-
sumption. To test this hypothesis, they monitored food intake for a group of 44 patients who were
randomized into two equal groups. The treatment group ate lunch while playing solitaire, and the
control group ate lunch without any added distractions. Patients in the treatment group ate 52.1
grams of biscuits, with a standard deviation of 45.1 grams, and patients in the control group ate
27.1 grams of biscuits, with a standard deviation of 26.4 grams. Do these data provide convincing
evidence that the average food intake (measured in amount of biscuits consumed) is different for
the patients in the treatment group? Assume that conditions for inference are satisfied.31

5.30 Prison isolation experiment, Part I. Subjects from Central Prison in Raleigh, NC, volunteered
for an experiment involving an “isolation” experience. The goal of the experiment was to find a
treatment that reduces subjects’ psychopathic deviant T scores. This score measures a person’s need
for control or their rebellion against control, and it is part of a commonly used mental health test

30data:epaMPG.
31Oldham:2011.
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called the Minnesota Multiphasic Personality Inventory (MMPI) test. The experiment had three
treatment groups:

(1) Four hours of sensory restriction plus a 15 minute “therapeutic" tape advising that professional
help is available.

(2) Four hours of sensory restriction plus a 15 minute “emotionally neutral” tape on training hunt-
ing dogs.

(3) Four hours of sensory restriction but no taped message.

Forty-two subjects were randomly assigned to these treatment groups, and an MMPI test was ad-
ministered before and after the treatment. Distributions of the differences between pre and post
treatment scores (pre - post) are shown below, along with some sample statistics. Use this infor-
mation to independently test the effectiveness of each treatment. Make sure to clearly state your
hypotheses, check conditions, and interpret results in the context of the data.32
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5.7.4 Power calculations for a difference of means

5.31 Increasing corn yield. A large farm wants to try out a new type of fertilizer to evaluate
whether it will improve the farm’s corn production. The land is broken into plots that produce an
average of 1,215 pounds of corn with a standard deviation of 94 pounds per plot. The owner is
interested in detecting any average difference of at least 40 pounds per plot. How many plots of
land would be needed for the experiment if the desired power level is 90%? Assume each plot of
land gets treated with either the current fertilizer or the new fertilizer.

5.32 Email outreach efforts. A medical research group is recruiting people to complete short
surveys about their medical history. For example, one survey asks for information on a person’s
family history in regards to cancer. Another survey asks about what topics were discussed during
the person’s last visit to a hospital. So far, as people sign up, they complete an average of just
4 surveys, and the standard deviation of the number of surveys is about 2.2. The research group
wants to try a new interface that they think will encourage new enrollees to complete more surveys,
where they will randomize each enrollee to either get the new interface or the current interface.
How many new enrollees do they need for each interface to detect an effect size of 0.5 surveys per
enrollee, if the desired power level is 80%?

32data:prison.
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5.7.5 Comparing many means with ANOVA
5.33 Fill in the blank. When doing an ANOVA, you observe large differences in means between
groups. Within the ANOVA framework, this would most likely be interpreted as evidence strongly
favoring the hypothesis.

5.34 Chicken diet and weight, Part III. In Exercises 5.25 and 5.27 we compared the effects of
two types of feed at a time. A better analysis would first consider all feed types at once: casein,
horsebean, linseed, meat meal, soybean, and sunflower. The ANOVA output below can be used to
test for differences between the average weights of chicks on different diets.

Df Sum Sq Mean Sq F value Pr(>F)
feed 5 231,129.16 46,225.83 15.36 0.0000
Residuals 65 195,556.02 3,008.55

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
weight of chicks varies across some (or all) groups. Make sure to check relevant conditions. Figures
and summary statistics are shown below.
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5.35 Teaching descriptive statistics. A study compared five different methods for teaching de-
scriptive statistics. The five methods were traditional lecture and discussion, programmed textbook
instruction, programmed text with lectures, computer instruction, and computer instruction with
lectures. 45 students were randomly assigned, 9 to each method. After completing the course,
students took a 1-hour exam.

(a) What are the hypotheses for evaluating if the average test scores are different for the different
teaching methods?

(b) What are the degrees of freedom associated with the F-test for evaluating these hypotheses?
(c) Suppose the p-value for this test is 0.0168. What is the conclusion?

5.36 Coffee, depression, and physical activity. Caffeine is the world’s most widely used stimu-
lant, with approximately 80% consumed in the form of coffee. Participants in a study investigating
the relationship between coffee consumption and exercise were asked to report the number of hours
they spent per week on moderate (e.g., brisk walking) and vigorous (e.g., strenuous sports and jog-
ging) exercise. Based on these data the researchers estimated the total hours of metabolic equivalent
tasks (MET) per week, a value always greater than 0. The table below gives summary statistics of
MET for women in this study based on the amount of coffee consumed.33

Caffeinated coffee consumption
≤ 1 cup/week 2-6 cups/week 1 cup/day 2-3 cups/day ≥ 4 cups/day Total

Mean 18.7 19.6 19.3 18.9 17.5
SD 21.1 25.5 22.5 22.0 22.0
n 12,215 6,617 17,234 12,290 2,383 50,739

33Lucas:2011.
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(a) Write the hypotheses for evaluating if the average physical activity level varies among the dif-
ferent levels of coffee consumption.

(b) Check conditions and describe any assumptions you must make to proceed with the test.
(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq Mean Sq F value Pr(>F)

coffee XXXXX XXXXX XXXXX XXXXX 0.0003

Residuals XXXXX 25,564,819 XXXXX

Total XXXXX 25,575,327

(d) What is the conclusion of the test?

5.37 Student performance across discussion sections. A professor who teaches a large intro-
ductory statistics class (197 students) with eight discussion sections would like to test if student
performance differs by discussion section, where each discussion section has a different teaching
assistant. The summary table below shows the average final exam score for each discussion section
as well as the standard deviation of scores and the number of students in each section.

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6 Sec 7 Sec 8
ni 33 19 10 29 33 10 32 31
x̄i 92.94 91.11 91.80 92.45 89.30 88.30 90.12 93.35
si 4.21 5.58 3.43 5.92 9.32 7.27 6.93 4.57

The ANOVA output below can be used to test for differences between the average scores from the
different discussion sections.

Df Sum Sq Mean Sq F value Pr(>F)
section 7 525.01 75.00 1.87 0.0767
Residuals 189 7584.11 40.13

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
score varies across some (or all) groups. Check conditions and describe any assumptions you must
make to proceed with the test.

5.38 GPA and major. Undergraduate students taking an introductory statistics course at Duke
University conducted a survey about GPA and major. The side-by-side box plots show the distribu-
tion of GPA among three groups of majors. Also provided is the ANOVA output.

G
PA

●

Arts and Humanities Natural Sciences Social Sciences

2.7

3.0

3.3

3.6

3.9

Df Sum Sq Mean Sq F value Pr(>F)
major 2 0.03 0.015 0.185 0.8313
Residuals 195 15.77 0.081

(a) Write the hypotheses for testing for a difference between average GPA across majors.
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(b) What is the conclusion of the hypothesis test?
(c) How many students answered these questions on the survey, i.e. what is the sample size?

5.39 Work hours and education. The General Social Survey collects data on demographics, educa-
tion, and work, among many other characteristics of US residents.34 Using ANOVA, we can consider
educational attainment levels for all 1,172 respondents at once. Below are the distributions of hours
worked by educational attainment and relevant summary statistics that will be helpful in carrying
out this analysis.

Educational attainment
Less than HS HS Jr Coll Bachelor’s Graduate Total

Mean 38.67 39.6 41.39 42.55 40.85 40.45
SD 15.81 14.97 18.1 13.62 15.51 15.17
n 121 546 97 253 155 1,172
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Less than HS HS Jr Coll Bachelor's Graduate
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(a) Write hypotheses for evaluating whether the average number of hours worked varies across the
five groups.

(b) Check conditions and describe any assumptions you must make to proceed with the test.
(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq Mean Sq F value Pr(>F)

degree XXXXX XXXXX 501.54 XXXXX 0.0682

Residuals XXXXX 267,382 XXXXX

Total XXXXX XXXXX

(d) What is the conclusion of the test?

5.40 True / False: ANOVA, Part I. Determine if the following statements are true or false in
ANOVA, and explain your reasoning for statements you identify as false.

(a) As the number of groups increases, the modified significance level for pairwise tests increases
as well.

(b) As the total sample size increases, the degrees of freedom for the residuals increases as well.
(c) The constant variance condition can be somewhat relaxed when the sample sizes are relatively

consistent across groups.
(d) The independence assumption can be relaxed when the total sample size is large.

5.41 Child care hours. The China Health and Nutrition Survey aims to examine the effects of the
health, nutrition, and family planning policies and programs implemented by national and local
governments.35 It, for example, collects information on number of hours Chinese parents spend

34data:gss:2010.
35data:china.
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taking care of their children under age 6. The side-by-side box plots below show the distribution of
this variable by educational attainment of the parent. Also provided below is the ANOVA output
for comparing average hours across educational attainment categories.

C
hi

ld
 c

ar
e 

ho
ur

s

Primary school Lower middle school Upper middle school Technical or vocational College
0

50

100

150

Df Sum Sq Mean Sq F value Pr(>F)
education 4 4142.09 1035.52 1.26 0.2846
Residuals 794 653047.83 822.48

(a) Write the hypotheses for testing for a difference between the average number of hours spent on
child care across educational attainment levels.

(b) What is the conclusion of the hypothesis test?

5.42 Prison isolation experiment, Part II. Exercise 5.30 introduced an experiment that was con-
ducted with the goal of identifying a treatment that reduces subjects’ psychopathic deviant T scores,
where this score measures a person’s need for control or his rebellion against control. In Exer-
cise 5.30 you evaluated the success of each treatment individually. An alternative analysis involves
comparing the success of treatments. The relevant ANOVA output is given below.

Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 639.48 319.74 3.33 0.0461
Residuals 39 3740.43 95.91

spooled = 9.793 on df = 39

(a) What are the hypotheses?
(b) What is the conclusion of the test? Use a 5% significance level.
(c) If in part (b) you determined that the test is significant, conduct pairwise tests to determine

which groups are different from each other. If you did not reject the null hypothesis in part (b),
recheck your answer.

5.43 True / False: ANOVA, Part II. Determine if the following statements are true or false, and
explain your reasoning for statements you identify as false.

If the null hypothesis that the means of four groups are all the same is rejected using ANOVA
at a 5% significance level, then ...

(a) we can then conclude that all the means are different from one another.
(b) the standardized variability between groups is higher than the standardized variability within

groups.
(c) the pairwise analysis will identify at least one pair of means that are significantly different.
(d) the appropriate α to be used in pairwise comparisons is 0.05 / 4 = 0.0125 since there are four

groups.



Chapter 6

Simple linear regression

The relationship between two numerical variables can be visualized using a scatterplot
in the xy-plane. The predictor or explanatory variable is plotted on the horizontal axis,
while the response variable is plotted on the vertical axis.1

This chapter explores simple linear regression, a technique for estimating a straight
line that best fits data on a scatterplot.2 A line of best fit functions as a linear model that
can not only be used for prediction, but also for inference. Linear regression should only
be used with data that exhibit linear or approximately linear relationships.

For example, scatterplots in Chapter 1 illustrated the linear relationship between
height and weight in the NHANES data, with height as a predictor of weight. Adding
a best-fitting line to these data using regression techniques would allow for prediction
of an individual’s weight based on their height. The linear model could also be used to
investigate questions about the population-level relationship between height and weight,
since the data are a random sample from the population of adults in the United States.

The next chapter covers multiple regression, a statistical model used to estimate the
relationship between a single numerical response variable and several predictor variables.

6.1 Examining scatterplots

Various demographic and cardiovascular risk factors were collected as a part of the Pre-
vention of REnal and Vascular END-stage Disease (PREVEND) study, which took place
in the Netherlands. The initial study population began as 8,592 participants aged 28-75
years who took a first survey in 1997-1998.3 Participants were followed over time; 6,894
participants took a second survey in 2001-2003, and 5,862 completed the third survey
in 2003-2006. In the third survey, measurement of cognitive function was added to the
study protocol. Data from 4,095 individuals who completed cognitive testing are in the
prevend dataset, available in the R oibiostat package.

As adults age, cognitive function changes over time, largely due to various cere-
brovascular and neurodegenerative changes. It is thought that cognitive decline is a long-

1Sometimes, the predictor variable is referred to as the independent variable, and the response variable
referred to as the dependent variable.

2Although the response variable in linear regression is necessarily numerical, the predictor variable can be
numerical or categorical.

3Participants were selected from the city of Groningen on the basis of their urinary albumin excretion;
urinary albumin excretion is known to be associated with abnormalities in renal function.

256
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term process that may start as early as 45 years of age.4 The Ruff Figural Fluency Test
(RFFT) is one measure of cognitive function that provides information about cognitive
abilities such as planning and the ability to switch between different tasks. The test con-
sists of drawing as many unique designs as possible from a pattern of dots, under timed
conditions; scores range from 0 to 175 points (worst and best score, respectively).

RFFT scores for a random sample of 500 individuals are shown in Figure 6.1, plotted
against age at enrollment, which is measured in years. The variables Age and RFFT are
negatively associated; older participants tend to have lower cognitive function. There is
an approximately linear trend observable in the data, which suggests that adding a line
could be useful for summarizing the relationship between the two variables.
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Figure 6.1: A scatterplot showing age vs. RFFT. Age is the predictor vari-
able, while RFFT score is the response variable.

It is important to avoid adding straight lines to non-linear data. For example, the
scatterplot in Figure 1.28 of Chapter 1 shows a highly non-linear relationship between
between annual per capita income and life expectancy for 165 countries in 2011.

The following conditions should be true in a scatterplot for a line to be considered
a reasonable approximation to the relationship in the plot and for the application of the
methods of inference discussed later in the chapter:

1 Linearity. The data shows a linear trend. If there is a nonlinear trend, an advanced
regression method should be applied; such methods are not covered in this text.
Occasionally, a transformation of the data will uncover a linear relationship in the
transformed scale.

2 Constant variability. The variability of the response variable about the line remains
roughly constant as the predictor variable changes.

3 Independent observations. The (x,y) pairs are independent; i.e., the value of one pair
provides no information about other pairs. Be cautious about applying regression
to sequential observations in time (time series data), such as height measurements
taken over the course of several years. Time series data may have a complex under-

4Joosten H, et al. Cardiovascular risk profile and cognitive function in young, middle-aged, and elderly
subjects. Stroke. 2013;44:1543-1549, https://doi.org/10.1161/STROKEAHA.111.000496

https://doi.org/10.1161/STROKEAHA.111.000496


258 CHAPTER 6. SIMPLE LINEAR REGRESSION

lying structure, and the relationship between the observations should be accounted
for in a model.

4 Residuals that are approximately normally distributed. This condition can be checked
only after a line has been fit to the data and will be explained in Section 6.3.1. In
large datasets, it is sufficient for the residuals to be approximately symmetric with
only a few outliers. This condition becomes particularly important when inferences
are made about the line, as discussed in Section 6.4.⊙
Guided Practice 6.1 Figure 6.2 shows the relationship between clutch.volume and
body.size in the frog data. The plot also appears as Figure 1.26 in Chapter 1. Are
the first three conditions met for linear regression?5
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Figure 6.2: A plot of clutch.volume versus body.size in the frog data.

5No. While the relationship appears linear and it is reasonable to assume the observations are independent
(based on information about the frogs given in Chapter 1), the variability in clutch.volume is noticeably less for
smaller values of body.size than for larger values.
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6.2 Estimating a regression line using least squares

Figure 6.3 shows the scatterplot of age versus RFFT score, with the least squares regres-
sion line added to the plot; this line can also be referred to as a linear model for the data.
An RFFT score can be predicted for a given age from the equation of the regression line:

�RFFT = 137.55− 1.26(age).

The vertical distance between a point in the scatterplot and the predicted value on the
regression line is the residual for the observation represented by the point; observations
below the line have negative residuals, while observations above the line have positive
residuals. The size of a residual is usually discussed in terms of its absolute value; for
example, a residual of −13 is considered larger than a residual of 5.

For example, consider the predicted RFFT score for an individual of age 56. Accord-
ing to the linear model, this individual has a predicted score of 137.550 − 1.261(56) =
66.934 points. In the data, however, there is a participant of age 56 with an RFFT score
of 72; their score is about 5 points higher than predicted by the model (this observation is
shown on the plot with a “×”).
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Figure 6.3: A scatterplot showing age (horizontal axis) vs. RFFT (vertical
axis) with the regression line added to the plot. Three observations are
marked in the figure; the one marked by a “+” has a large residual of about
+38, the one marked by a “×” has a small residual of about +5, and the one
marked by a “4” has a moderate residual of about -13. The vertical dotted
lines extending from the observations to the regression line represent the
residuals.
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Residual: difference between observed and expected

The residual of the ith observation (xi , yi) is the difference of the observed re-
sponse (yi) and the response predicted based on the model fit (ŷi):

ei = yi − ŷi

The value ŷi is calculated by plugging xi into the model equation.

The least squares regression line is the line which minimizes the sum of the squared
residuals for all the points in the plot. Let ŷi be the predicted value for an observation with
value xi for the explanatory variable. The value ei = yi − ŷi is the residual for a data point
(xi , yi) in a scatterplot with n pairs of points. The least squares line is the line for which

e2
1 + e2

2 + · · ·+ e2
n (6.2)

is smallest.
For a general population of ordered pairs (x,y), the population regression model is

y = β0 + β1x+ ε.

The term ε is a normally distributed ‘error term’ that has mean 0 and standard devi-
ation σ . Since E(ε) = 0, the model can also be written

E(Y |x) = β0 + β1x,

where the notation E(Y |x) denotes the expected value of Y when the predictor variable
has value x.6 For the PREVEND data, the population regression line can be written as

RFFT = β0 + β1(age) + ε, or as E(RFFT|age) = β0 + β1(age).

The term β0 is the vertical intercept for the line (often referred to simply as the inter-
cept) and β1 is the slope. The notation b0 and b1 are used to represent the point estimates
of the parameters β0 and β1. The point estimates b0 and b1 are estimated from data; β0
and β1 are parameters from the population model for the regression line.

b0,b1
Sample
estimates
of β0, β1

The regression line can be written as ŷ = b0 + b1(x), where ŷ represents the predicted
value of the response variable. The slope of the least squares line, b1, is estimated by

b1 =
sy
sx
r, (6.3)

where r is the correlation between the two variables, and sx and sy are the sample standard
deviations of the explanatory and response variables, respectively. The intercept for the
regression line is estimated by

b0 = y − b1x. (6.4)

Typically, regression lines are estimated using statistical software.

 Example 6.5 From the summary statistics displayed in Table 6.4 for prevend.samp,
calculate the equation of the least-squares regression line for the PREVEND data.

6The error term ε can be thought of as a population parameter for the residuals (e). While ε is a theoret-
ical quantity that refers to the deviation between an observed value and E(Y |x), a residual is calculated as the
deviation between an observed value and the prediction from the linear model.
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Age (yrs) RFFT score
mean x = 54.82 y = 68.40
standard deviation sx = 11.60 sy = 27.40

r = −0.534

Table 6.4: Summary statistics for age and RFFT from prevend.samp.

b1 =
sy
sx
r =

27.40
11.60

(−0.534) = −1.26

b0 = y − b1x = 68.40− (5.14)(54.82) = 137.55.

The results agree with the equation shown at the beginning of this section:

�RFFT = 137.55− 1.26(age).⊙
Guided Practice 6.6 Figure 6.5 shows the relationship between height and weight
in a sample from the NHANES dataset introduced in Chapter 1. Calculate the equa-
tion of the regression line given the summary statistics: x = 168.78, y = 83.83, sx =
10.29, sy = 21.04, r = 0.410.7
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Figure 6.5: A plot of Height versus Weight in nhanes.samp.adult.500, with
a least-squares regression line

⊙
Guided Practice 6.7 Predict the weight in pounds for an adult who is 5 feet, 11
inches tall. 1 cm = .3937 in; 1 lb = 0.454 kg.8

7The equation of the line is �weight = −57.738 + 0.839(height), where height is in centimeters and weight is
in kilograms.

85 feet, 11 inches equals 71/.3937 = 180.34 centimeters. From the regression equation, the predicted weight
is −57.738 + 0.839(180.34) = 93.567 kilograms. In pounds, this weight is 93.567/0.454 = 206.280.
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6.3 Interpreting a linear model

A least squares regression line functions as a statistical model that can be used to estimate
the relationship between an explanatory and response variable. While the calculations for
constructing a regression line are relatively simple, interpreting the linear model is not al-
ways straightforward. In addition to discussing the mathematical interpretation of model
parameters, this section also addresses methods for assessing whether a linear model is
an appropriate choice, interpreting categorical predictors, and identifying outliers.

The slope parameter of the regression line specifies how much the line rises (positive
slope) or declines (negative slope) for one unit of change in the explanatory variable. In the
PREVEND data, the line decreases by 1.26 points for every increase of 1 year. However,
it is important to clarify that RFFT score tends to decrease as age increases, with average
RFFT score decreasing by 1.26 points for each additional year of age. As visible from the
scatter of the data around the line, the line does not perfectly predict RFFT score from
age; if this were the case, all the data would fall exactly on the line.

When interpreting the slope parameter, it is also necessary to avoid phrasing indica-
tive of a causal relationship, since the line describes an association from data collected in
an observational study. From these data, it is not possible to conclude that increased age
causes a decline in cognitive function.9

Mathematically, the intercept on the vertical axis is a predicted value on the line
when the explanatory variable has value 0. In biological or medical examples, 0 is rarely
a meaningful value of the explanatory variable. For example, in the PREVEND data, the
linear model predicts a score of 137.55 when age is 0—however, it is nonsensical to predict
an RFFT score for a newborn infant.

In fact, least squares lines should never be used to extrapolate values outside the
range of observed values. Since the PREVEND data only includes participants between
ages 36 and 81, it should not be used to predict RFFT scores for people outside that age
range. The nature of a relationship may change for very small or very large values of the
explanatory variable; for example, if participants between ages 15 and 25 were studied,
a different relationship between age and RFFT scores might be observed. Even making
predictions for values of the explanatory variable slightly larger than the minimum or
slightly smaller than the maximum can be dangerous, since in many datasets, observations
near the minimum or maximum values (of the explanatory variable) are sparse.

Linear models are useful tools for summarizing a relationship between two variables,
but it is important to be cautious about making potentially misleading claims based on a
regression line. The following subsection discusses two commonly used approaches for
examining whether a linear model can reasonably be applied to a dataset.

6.3.1 Checking residuals from a linear model

Recall that there are four assumptions that must be met for a linear model to be con-
sidered reasonable: linearity, constant variability, independent observations, normally
distributed residuals. In the PREVEND data, the relationship between RFFT score and
age appears approximately linear, and it is reasonable to assume that the data points are
independent. To check the assumptions of constant variability around the line and nor-
mality of the residuals, it is helpful to consult residual plots and normal probability plots

9Similarly, avoid language such as increased age leads to or produces lower RFFT scores.
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(Section 3.3.7).10

Examining patterns in residuals

There are a variety of residual plots used to check the fit of a least squares line. The plots
shown in this text are scatterplots in which the residuals are plotted on the vertical axis
against predicted values from the model on the horizontal axis. Other residual plots may
instead show values of the explanatory variable or the observed response variable on the
horizontal axis. When a least squares line fits data very well, the residuals should scatter
about the horizontal line y = 0 with no apparent pattern.

Figure 6.6 shows three residual plots from simulated data; the plots on the right
show data plotted with the least squares regression line, and the plots on the left show
residuals on the y-axis and predicted values on the x-axis. A linear model is a particularly
good fit for the data in the first row, where the residual plot shows random scatter above
and below the horizontal line. In the second row, the original data cycles below and above
the regression line; this nonlinear pattern is more evident in the residual plot. In the last
row, the variability of the residuals is not constant; the residuals are slightly more variable
for larger predicted values.
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Figure 6.6: Sample data with their best fitting lines (left) and their corre-
sponding residual plots (right).

Figure 6.7 shows a residual plot from the estimated linear model �RFFT = 137.55 −
10While simple arithmetic can be used to calculate the residuals, the size of most datasets makes hand calcu-

lations impractical. The plots here are based on calculations done in R.
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1.26(age). While the residuals show scatter around the line, there is less variability for
lower predicted RFFT scores. A data analyst might still decide to use the linear model,
with the knowledge that predictions of high RFFT scores may not be as accurate as for
lower scores. Reading a residual plot critically can reveal weaknesses about a linear model
that should be taken into account when interpreting model results. More advanced regres-
sion methods beyond the scope of this text may be more suitable for these data.
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Figure 6.7: Residual plot for the model in Figure 6.3 using prevend.samp.
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 Example 6.8 Figure 6.8 shows a residual plot for the model predicting weight from
height using the sample of 500 adults from the NHANES data, nhanes.samp.adult.500.
Assess whether the constant variability assumption holds for the linear model.
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Figure 6.8: A residual plot from the linear model for height versus weight
in nhanes.samp.adult.500.

The residuals above the line are more variable, taking on more extreme values than
those below the line. Larger than expected residuals imply that there are many
large weights that are under-predicted; in other words, the model is less accurate at
predicting relatively large weights.

Checking normality of the residuals

The normal probability plot, introduced in Section 3.3.7, is best suited for checking nor-
mality of the residuals, since normality can be difficult to assess using histograms alone.
Figure 6.9 shows both the histogram and normal probability plot of the residuals after
fitting a least squares regression to the age versus RFFT data.
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Figure 6.9: A histogram and normal probability plot of the residuals from
the linear model for RFFT versus Age in prevend.samp.

The normal probability plot shows that the residuals are nearly normally distributed,
with only slight deviations from normality in the left and right tails.
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⊙
Guided Practice 6.9 Figure 6.10 shows a histogram and normal probability plot for
the linear model to predict weight from height in nhanes.samp.adult.500. Evaluate
the normality of the residuals.11

Residuals
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Figure 6.10: A histogram and normal probability plot of the residuals
from the linear model for height versus weight in nhanes.samp.adult.500.

6.3.2 Using R2 to describe the strength of a fit

The correlation coefficient r measures the strength of the linear relationship between two
variables. However, it is more common to measure the strength of a linear fit using r2,
which is commonly written as R2 in the context of regression.12

The quantity R2 describes the amount of variation in the response that is explained
by the least squares line. While R2 can be easily calculated by simply squaring the corre-
lation coefficient, it is easier to understand the interpretation of R2 by using an alternative
formula:

R2 =
variance of predicted y-values
variance of observed y-values

.

It is possible to show that R2 can also be written

R2 =
s2y − s2residuals

s2y
.

In the linear model predicting RFFT scores from age, the predicted values on the
least squares line are the values of RFFT that are ’explained’ by the linear model. The
variability of the residuals about the line represents the remaining variability after the
prediction; i.e., the variability unexplained by the model. For example, if a linear model
perfectly captured all the data, then the variance of the predicted y-values would be equal
to the variance of the observed y-values, resulting in R2 = 1. In the linear model for �RFFT ,
the proportion of variability explained is

R2 =
s2RFFT − s

2
residuals

s2RFFT
=

750.52− 536.62
750.52

=
213.90
750.52

= 0.285,

11The data are roughly normal, but there are deviations from normality in the tails, particularly the upper
tail. There are some relatively large observations, which is evident from the residual plot shown in Figure 6.8.

12In software output, R2 is usually labeled R-squared.
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about 29%. This is equal to the square of the correlation coefficient, r2 = −0.5342 = 0.285.
Since R2 in simple linear regression is simply the square of the correlation coeffi-

cient between the predictor and the response, it does not add a new tool to regression.
It becomes much more useful in models with several predictors, where it has the same
interpretation as the proportion of variability explained by a model but is no longer the
square of any one of the correlation coefficients between the individual responses and the
predictor. Those models are discussed in Chapter 7.⊙

Guided Practice 6.10 In the NHANES data, the variance of Weight is 442.53 kg2

and the variance of the residuals is 368.1. What proportion of the variability in the
data is explained by the model?13

⊙
Guided Practice 6.11 If a linear model has a very strong negative relationship with
a correlation of -0.97, how much of the variation in the response is explained by the
explanatory variable?14

6.3.3 Categorical predictors with two levels

Although the response variable in linear regression is necessarily numerical, the predictor
variable may be either numerical or categorical. This section explores the association
between a country’s infant mortality rate and whether or not 50% of the population has
access to adequate sanitation facilities.

The World Development Indicators (WDI) is a database of country-level variables
(i.e., indicators) recording outcomes for a variety of topics, including economics, health,
mortality, fertility, and education.15 The dataset wdi.2011 contains a subset of variables
on 165 countries from the year 2011.16 The infant mortality rate in a country is recorded
as the number of deaths in the first year of life per 1,000 live births. Access to sanita-
tion is recorded as the percentage of the population with adequate disposal facilities for
human waste. Due to the availability of death certificates, infant mortality is measured
reasonably accurately throughout the world. However, it is more difficult to obtain pre-
cise measurements of the percentage of a population with access to adequate sanitation
facilities; instead, considering whether half the population has such access may be a more
reliable measure. The analysis presented here is based on 163 of the 165 countries; the
values for access to sanitation are missing for New Zealand and Turkmenistan.

Figure 6.11(a) shows that infant mortality rates are highly right-skewed, with a rel-
atively small number of countries having high infant mortality rates. In 13 countries,
infant mortality rates are higher than 70 deaths per thousand live births. Figure 6.11(b)
shows infant mortality after a log transformation; the following analysis will use the more
nearly symmetric transformed version of inf.mortality.

Figure 6.12 shows a scatterplot of log(inf.mortality) against the categorical variable
for sanitation access, coded 1 if at least 50% of the population has access to adequate
sanitation, and 0 otherwise. Since there are only two values of the predictor, the values of
infant mortality are stacked above the two predictor values 0 and 1.17

13About 16.8%:
s2weight−s

2
residuals

s2weight
= 442.53−368.1

442.53 = 74.43
442.53 = 0.168

14About R2 = (−0.97)2 = 0.94 or 94% of the variation is explained by the linear model.
15http://data.worldbank.org/data-catalog/world-development-indicators
16The data were collected by a Harvard undergraduate in the Statistics department, and are accessible via the

http://data.worldbank.org/data-catalog/world-development-indicators
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Figure 6.11: (a) Histogram of infant mortality, measured in deaths per
1,000 live births in the first year of life. (b) Histogram of the log-
transformed infant mortality.
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Figure 6.12: Country-level infant mortality rates, divided into low access
(x = 0) and high access (x = 1) to sanitation. The least squares regression
line is also shown.

The least squares regression line has the form

�log(inf.mortality) = b0 + b1(sanit.access). (6.12)

The estimated least squares regression line has intercept and slope parameters of

oibiostat package.
17Typically, side-by-side boxplots are used to display the relationship between a numerical variable and a

categorical variable. In a regression context, it can be useful to use a scatterplot instead, in order to see the
variability around the regression line.
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4.018 and -1.681, respectively. While the scatterplot appears unlike those for two numer-
ical variables, the interpretation of the parameters remains unchanged. The slope, -1.681,
is the estimated change in the logarithm of infant mortality when the categorical predictor
changes from low access to sanitation facilities to high access. The intercept term 4.018
is the estimated log infant mortality for the set of countries where less than 50% of the
population has access to adequate sanitation facilities (sanit.access = 0).

Using the model in Equation 6.12, the prediction equation can be written

�log(inf.mortality) = 4.018− 1.681(sanit.access).

Exponentiating both sides of the equation yields

�inf.mortality = e4.018−1.681(sanit.access).

When sanit.access = 0, the equation simplifies to e4.018 = 55.590 deaths among 1,000
live births; this is the estimated infant mortality rate in the countries with low access
to sanitation facilities. When sanit.access = 1, the estimated infant mortality rate is
e4.018−1.681(1) = e2.337 = 10.350 deaths per 1,000 live births. The infant mortality rate drops
by a factor of 0.186; i.e., the mortality rate in the high access countries is approximately
20% of that in the low access countries.18

 Example 6.13 Check the assumptions of constant variability around the regression
line and normality of the residuals in the model for the relationship between the
transformed infant mortality variable and access to sanitation variable. Residual
plots are shown in Figure 6.13.
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Figure 6.13: (a) Residual plot of log(inf.mortality) and sanit.access.
(b) Histogram and normal probability plot of the residuals.

While the normal probability plot does show that the residuals are approximately
normally distributed, the residual plot reveals that variability is far from constant
around the two predictors. Another method for assessing the relationship between
the two groups is advisable; this is discussed further in Section 6.4.

6.3.4 Outliers in regression

Depending on their position, data points in a scatterplot have varying degrees of contri-
bution to the estimated parameters of a regression line. Points that are at particularly low

18When examining event rates in public health, associations are typically measured using rate ratios rather
than rate differences.
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or high values of the predictor (x) variable are said to have high leverage, and have a large
influence on the estimated intercept and slope of the regression line; observations with x
values closer to the center of the distribution of x do not have a large effect on the slope.

A data point in a scatterplot is considered an outlier in regression if its value for the
response (y) variable does not follow the general linear trend in the data. Outliers that
sit at extreme values of the predictor variable (i.e., have high leverage) have the potential
to contribute disproportionately to the estimated parameters of a regression line. If an
observation does have a strong effect on the estimates of the line, such that estimates
change substantially when the point is omitted, the observation is influential. These
terms are formally defined in advanced regression courses.

This section examines the relationship between infant mortality and number of doc-
tors, using data for each state and the District of Columbia.19 Infant mortality is measured
as the number of infant deaths in the first year of life per 1,000 live births, and number
of doctors is recorded as number of doctors per 100,000 members of the population. Fig-
ure 6.14 shows scatterplots with infant mortality on the y-axis and number of doctors on
the x-axis.

One point in Figure 6.14(a), marked in red, is clearly distant from the main cluster
of points. This point corresponds to the District of Columbia, where there were approx-
imately 807.2 doctors per 100,000 members of the population, and the infant mortality
rate was 11.3 per 1,000 live births. Since 807.2 is a high value for the predictor variable,
this observation has high leverage. It is also an outlier; the other points exhibit a down-
ward sloping trend as the number of doctors increases, but this point, with an unusually
high y-value paired with a high x-value, does not follow the trend.

Figure 6.14(b) illustrates that the DC observation is influential. Not only does the
observation simply change the numerical value of the slope parameter, it reverses the
direction of the linear trend; the regression line fitted with the complete dataset has a
positive slope, but the line re-fitted without the DC observation has a negative slope. The
large number of doctors per population is due to the presence of several large medical
centers in an area with a population that is much smaller than a typical state.

It seems natural to ask whether or not an influential point should be removed from
a dataset, but that may not be the right question. Instead, it is usually more important to
assess whether the influential point might be an error in the data, or whether it belongs in
the dataset. In this case, the District of Columbia has certain characteristics that may make
comparisons with other states inappropriate; this is one argument in favor of excluding
the DC observation from the data.

Generally speaking, if an influential point arises from random sampling from a large
population and is not a data error, it should be left in the dataset, since it probably repre-
sents a small subset of the population from which the data were sampled.⊙

Guided Practice 6.14 Once the influential DC point is removed, assess whether it is
appropriate to use linear regression on these data by checking the four assumptions
behind least squares regression: linearity, constant variability, independent observa-
tions, and approximate normality of the residuals. Refer to the residual plots shown
in Figure 6.15.20

19Data are from the Statistical Abstract of the United States, published by the US Census Bureau. Data are
for 2010, and available as census.2010 in the oibiostat package.

20The scatter plot in Figure 6.14(b) does not show any nonlinear trends. Similarly, Figure 6.15(a) does not
indicate any nonlinear trends or noticeable difference in the variability of the residuals, although it does show
that there are relatively few observations for low values of predicted infant mortality. From Figure 6.15(b), the
residuals are approximately normally distributed. Infant mortality across the states reflects a complex mix of
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Figure 6.14: (a) Plot including District of Columbia data point. (b) Plot
without influential District of Columbia data point.
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Figure 6.15: (a) Residual plot of inf.mortality and doctors. (b) His-
togram and normal probability plot of the residuals.

different levels of income, access to health care, and individual state initiatives in health care; these and other
state-specific features probably act independently across the states, although there is some dependence from
federal influence such as funding for pre-natal care. Overall, independence seems like a reasonable assumption.
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6.4 Statistical inference with regression

The previous sections in this chapter have focused on linear regression as a tool for sum-
marizing trends in data and making predictions. These numerical summaries are anal-
ogous to the methods discussed in Chapter 1 for displaying and summarizing data. Re-
gression is also used to make inferences about a population.

The same ideas covered in Chapters 4 and 5 about using data from a sample to draw
inferences about population parameters apply with regression. Previously, the goal was to
draw inference about the population parameter µ; in regression, the population parameter
of interest is typically the slope parameter β1. Inference about the intercept term is rare,
and limited to the few problems where the vertical intercept has scientific meaning.21

Inference in regression relies on the population linear model for the relationship
between an explanatory variable X and a response variable Y given by

Y = β0 + β1X + ε, (6.15)

where ε is assumed to have a normal distribution with mean 0 and standard deviation σ
(ε ∼ N (0,σ )). This population model specifies that a response Y has value β0 + β1X plus
a random term that pushes Y symmetrically above or below the value specified by the
line.22

The set of ordered pairs (xi , yi) used when fitting a least squares regression line are
assumed to have been sampled from a population in which the relationship between the
explanatory and response variables follows Equation 6.15. Under this assumption, the
slope and intercept values of the least squares regression line, b0 and b1, are estimates
of the population parameters β0 and β1; b0 and b1 have sampling distributions, just as X
does when thought of as an estimate of a population mean µ. A more advanced treatment
of regression would demonstrate that the sampling distribution of b1 is normal with mean
E(b1) = β1 and standard deviation

σb1
=

σ√∑
(xi − x)2

.

The sampling distribution of b0 has mean E(b0) = β0 and standard deviation

σb0
= σ

√
1
n

+
x2∑

(xi − x)2 .

In both of these expressions, σ is the standard deviation of ε.
Hypothesis tests and confidence intervals for regression parameters have the same

basic form as tests and intervals about population means. The test statistic for a null
hypothesis H0 : β1 = β0

1 about a slope parameter is

t =
b1 − β0

1
s.e.(b1)

,

where the formula for s.e.(b1) is given below. In this setting, t has a t-distribution with
n − 2 degrees of freedom, where n is the number of ordered pairs used to calculated the
least squares line.

21In some applications of regression, the predictor x is replaced by x∗ = x − x. In that case, the vertical
intercept is the value of the line when x∗ = 0, or x = x.

22Since E(ε) = 0, this model can also be written as Y ∼ N (µx), with µx = E(Y ) = β0 + β1X. The term ε is the
population model for the observed residuals ei in regression.
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Typically, hypothesis testing in regression involves tests of whether the x and y vari-
ables are associated; in other words, whether the slope is significantly different from 0. In
these settings, the null hypothesis is that there is no association between the explanatory
and response variables, or H0 : β1 = 0 = β0

1 , in which case

t =
b1

s.e.(b1)
.

The hypothesis is rejected in favor of the two-sided alternative HA : β1 , 0 with signifi-
cance level α when |t| ≥ t?df, where t?df is the point on a t-distribution with n− 2 degrees of
freedom that has α/2 area to its right (i.e., when p ≤ α).

A two-sided confidence interval for β1 is given by

b1 ± s.e.(b1)× t?df.

Tests for one-sided alternatives and one-sided confidence intervals make the usual adjust-
ments to the rejection rule and confidence interval, and p-values are interpreted just as in
Chapters 4 and 5.

Formulas for calculating standard errors

Statistical software is typically used to obtain t-statistics and p-values for inference with
regression, since using the formulas for calculating standard error can be cumbersome.

The standard errors of b0 and b1 used in confidence intervals and hypothesis tests
replace σ with s, the standard deviation of the residuals from a fitted line. Formally,

s =

√∑
e2
i

n− 2
=

√∑
(yi − ŷi)2

n− 2

The two standard errors are

s.e.(b1) =
s√∑

(xi − x)2
s.e.(b0) = s

√
1
n

+
x2∑

(xi − x)2

 Example 6.16 Is there evidence of a significant association between number of doc-
tors per 100,000 members of the population in a state with infant mortality rate?

The numerical output that R returns is shown in Table 6.16.23

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5991 0.7603 11.31 0.0000

Doctors Per 100,000 -0.0068 0.0028 -2.40 0.0206

Table 6.16: Summary of regression output from R for the model predicting
infant mortality from number of doctors, using the census.2010 dataset.

The question implies that the District of Columbia should not be included in the
analysis. The assumptions for applying a least squares regression have been verified

23Other software packages, such as Stata or Minitab, provide similar information but with slightly different
labeling.
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in Exercise 6.14. Whenever possible, formal inference should be preceded by a check
of the assumptions for regression.

The null and alternative hypotheses are H0 : β1 = 0 and HA : β1 , 0.

The estimated slope of the least squares line is -0.0068, with standard error 0.0028.
The t-statistic equals -2.40, and the probability that the absolute value of a t-statistic
with 50−2 = 48 degrees of freedom is smaller than −2.40 or larger than 2.40 is 0.021.

Since p = 0.021 < 0.05, the data support the alternative hypothesis that the number
of physicians is associated with infant mortality at the 0.05 significance level. The
sign of the slope implies that the association is negative; states with more doctors
tend to have lower rates of infant mortality.

Care should be taken in interpreting the above results. The R2 for the model is 0.107;
the model explains only about 10% of the state-to-state variability in infant mortality,
which suggests there are several other factors affecting infant mortality that are not ac-
counted for in the model.24 Additionally, an important implicit assumption being made
in this example is that data from the year 2010 are representative; in other words, that
the relationship between number of physicians and infant mortality is constant over time,
and that the data from 2010 can be used to make inference about other years.

Note that it would be incorrect to make claims of causality from these data, such as
stating that an additional 100 physicians (per 100,000 residents) would lead to a decrease
of 0.68 in the infant mortality rate.⊙

Guided Practice 6.17 Calculate a 95% two-sided confidence interval for the slope
parameter β1 in the state-level infant mortality data.25

Connection to two-group hypothesis testing

Conducting a regression analysis with a numerical response variable and a categorical
predictor with two levels is analogous to conducting a two-group hypothesis test.

For example, Section 6.3.3 shows a regression model that compares the average infant
mortality rate in countries with low access to sanitation facilities versus high access.26 In
other words, the purpose of the analysis is to compare mean infant mortality rate between
the two groups: countries with low access versus countries with high access. Recall that
the slope parameter b1 is the difference between the means of log(mortality rate). A test
of the null hypothesis H0 : β1 = 0 in the context of a categorical predictor with two levels
is a test of whether the two means are different, just as for the two-group null hypothesis,
H0 : µ1 = µ2.

When the pooled standard deviation assumption (Section 5.3.5) is used, the t-statistic
and p-value from a two-group hypothesis test are equivalent to that returned from a re-
gression model.

Table 6.17 shows the R output from a regression model in the wdi.2011 data, in which
sanit.access = 1 for countries where at least 50% of the population has access to adequate
sanitation and 0 otherwise. The abbreviated R output from two-group t-tests are shown
in Table 6.18. The version of the t-test that does not assume equal standard deviations
and uses non-integer degrees of freedom is often referred to as the Welch test.

24Calculations of the R2 value are not shown here.
25The t? value for a t-distribution with 48 degrees of freedom is 2.01, and the standard error of b1 is 0.0028.

The 95% confidence interval is −0.0068± 2.01(0.0028) = (-0.0124, -0.0012).
26Recall that a log transformation was used on the infant mortality rate.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0184 0.1100 36.52 < 0.001

High Access -1.6806 0.1322 -12.72 0.001

Table 6.17: Regression of log(infant mortality) versus sanitation access.

Test df t value Pr(>|t|)
Two-group t-test 161 12.72 < 0.001
Welch two-group t-test 155.82 17.36 < 0.001

Table 6.18: Results from the independent two-group t-test, under dif-
fering assumptions about standard deviations between groups, for mean
log(infant mortality) between sanitation access groups.

The sign of the t-statistic differs because for the two-group test, the difference in
mean log(infant mortality) was calculated by subtracting the mean in the high access
group from the mean in the low access group; in the regression model, the negative sign
reflects the reduction in mean log(infant mortality) when changing from low access to
high access. Since the t-distribution is symmetric, the two-sided p-value is equal. In
this case, p is a small number less than 0.001, as calculated from a t-distribution with
163−2 = 161 degrees of freedom (recall that 163 countries are represented in the dataset).
The degrees of freedom for the pooled two-group test and linear regression are equivalent.

Example 6.13 showed that the constant variability assumption does not hold for these
data. As a result, it might be advisable for a researcher interested in comparing the infant
mortality rates between these two groups to conduct a two-group hypothesis test without
using the pooled standard deviation assumption. Since this test uses a different formula
for calculating the standard error of the difference in means, the t-statistic is different;
additionally, the degrees of freedom are not equivalent. In this particular example, there
is not a noticeable effect on the p-value.
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6.5 Notes

This chapter provides only an introduction to simple linear regression; the next chapter,
Chapter 7, expands on the principles of simple regression to models with more than one
predictor variable.

When fitting a simple regression, be sure to visually assess whether the model is
appropriate. Nonlinear trends or outliers are often obvious in a scatterplot with the least
squares line plotted. If outliers are evident, the data source should be consulted when
possible, since outliers may be indicative of errors in data collection. It is also important
to consider whether observed outliers belong to the target population of inference, and
assess whether the outliers should be included in the analysis.

There are several variants of residual plots used for model diagnostics. The ones
shown in Section 6.3.1, which plot the predicted values on the horizontal axis, easily gen-
eralize to settings with multiple predictors, since there is always a single predicted value
even when there is more than one predictor. If the only model used is a simple regression,
plotting residuals against predictor values may make it easier to identify a case with a
notable residual. Additionally, data analysts will sometimes plot residuals against case
number of the predictor, since runs of large or small residuals may indicate that adjacent
cases are correlated.

The R2 statistic is widely used in the social sciences, where the unexplained vari-
ability in the data is typically much larger than the variability captured or explained by
a model. It is important to be aware of what information R2 does and does not provide.
Even though a model may have a low proportion of explained variability, regression co-
efficients in the model can still be highly statistically significant. The R2 should not be
interpreted as a measure of the quality of the fit of the model. It is possible for R2 to be
large even when the data do not show a linear relationship.

Linear regression models are often estimated after an investigator has noticed a linear
relationship in data, and experienced investigators can often guess correctly that regres-
sion coefficients will be significant before calculating a p-value. Unlike with two-sample
hypothesis tests, regression models are rarely specified in advance at the design stage. In
practice, it is best to be skeptical about a small p-value in a regression setting, and wait
to see whether the observed statistically significant relationship can be confirmed in an
independent dataset. The issue of model validation and assessing whether results of a re-
gression analysis will generalize to other datasets is often discussed at length in advanced
courses.

In more advanced texts, substantial attention is devoted to the subtleties of fitting
straight line models. For instance, there are strategies for adjusting an analysis when one
or more of the assumptions for regression do not hold. There are also specific methods to
numerically assess the leverage or influence that each observation has on a fitted model.

Lab 1 explores the relationship between cognitive function and age in adults by fit-
ting and interpreting a straight line to these variables in the PREVEND dataset. Lab 2
discusses the statistical model for least squares regression and discusses residual plots
used to assess the assumptions for linear regression. The lab is a useful reminder that
least squares regression is much more than the mechanics of finding a line that best fits
a dataset. Lab 3 uses simulated data to explore the quantity R2. Categorical predictor
variables are common in medicine and the life sciences. Lab 4 explores the use of bi-
nary categorical predictor variables in regression and shows how two-sample t-tests can
be calculated using linear regression, in addition to introducing inference in a regression
context.



Chapter 7

Multiple linear regression

In most practical settings, more than one explanatory variable is likely to be associated
with a response. This chapter discusses how the ideas behind simple linear regression can
be extended to a model with multiple predictor variables.

There are several applications of multiple regression. One of the most common ap-
plications in a clinical setting is estimating an association between a response variable
and primary predictor of interest while adjusting for possible confounding variables. Sec-
tions 7.1 and 7.2 introduce the multiple regression model by examining the possible asso-
ciation between cognitive function and the use of statins after adjusting for potential con-
founders. Section 7.8 discusses another application of multiple regression—constructing
a model that effectively explains the observed variation in the response variable.

The other sections in the chapter outline general principles of multiple regression,
including the statistical model, methods for assessing quality of model fit, categorical
predictors with more than two levels, interaction, and the connection between ANOVA
and regression.

7.1 Introduction to multiple linear regression

Statins are a class of drugs widely used to lower cholesterol. There are two main types of
cholesterol: low density lipoprotein (LDL) and high density lipoprotein (HDL).1 Research
suggests that adults with elevated LDL may be at risk for adverse cardiovascular events
such as a heart attack or stroke. In 2013, a panel of experts commissioned by the Ameri-
can College of Cardiology and the American Heart Association recommended that statin
therapy be considered in individuals who either have any form of atherosclerotic cardio-
vascular disease2 or have LDL cholesterol levels ≥ 190 mg/dL, individuals with Type II
diabetes ages 40 to 75 with LDL between 70 to 189 mg/dL, and non-diabetic individuals
ages of 40 to 75 with a predicted probability of future clogged arteries of at least 0.075.3

Health policy analysts have estimated that if the new guidelines were to be followed,
almost half of Americans ages 40 to 75 and nearly all men over 60 would be prescribed
a statin. However, some physicians have raised the question of whether treatment with

1Total cholesterol level is the sum of LDL and HDL levels.
2i.e., arteries thickening and hardening with plaque
3Circulation. 2014;129:S1-S45. DOI: 10.1161/01.cir.0000437738.63853.7a
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Figure 7.1: A scatterplot showing age vs. RFFT in prevend.samp. Statin
users are represented with red points; participants not using statins are
shown as blue points.

a statin might be associated with an increased risk of cognitive decline.4,5 Older adults
are at increased risk for cardiovascular disease, but also for cognitive decline. A study by
Joosten, et al. examined the association of statin use and other variables with cognitive
ability in an observational cohort of 4,095 participants from the Netherlands who were
part of the larger PREVEND study introduced in Section 6.1.6 The analyses presented in
this chapter are based on a random sample of 500 participants from the cohort.7

The investigators behind the Joosten study anticipated an issue in the analysis—statins
are used more often in older adults than younger adults, and older adults suffer a natural
cognitive decline. Age is a potential confounder in this setting. If age is not accounted
for in the analysis, it may seem that cognitive decline is more common among individu-
als prescribed statins, simply because those prescribed statins are simply older and more
likely to have reduced cognitive ability than those not prescribed statins.

Figure 7.1 visually demonstrates why age is a potential confounder for the associa-
tion between statin use and cognitive function, where cognitive function is measured via
the Ruff Figural Fluency Test (RFFT). Scores range from 0 (worst) to 175 (best). The blue
points indicate individuals not using statins, while red points indicate statin users. First,
it is clear that age and statin use are associated, with statin use becoming more common
as age increases; the red points are more prevalent on the right side of the plot. Second,
it is also clear that age is associated with lower RFFT scores; ignoring the colors, the point
cloud drifts down and to the right. However, a close inspection of the plot suggests that for
ages in relatively small ranges (e.g., ages 50-60), statin use may not be strongly associated

4Muldoon, Matthew F., et al. Randomized trial of the effects of simvastatin on cognitive functioning in
hypercholesterolemic adults. The American journal of medicine 117.11 (2004): 823-829.

5King, Deborah S., et al. Cognitive impairment associated with atorvastatin and simvastatin. Pharmacother-
apy: The Journal of Human Pharmacology and Drug Therapy 23.12 (2003): 1663-1667.

6Joosten H, Visser ST, van Eersel ME, Gansevoort RT, Bilo HJG, et al. (2014) Statin Use and Cognitive
Function: Population-Based Observational Study with Long-Term Follow- Up. PLoS ONE 9(12): e115755.
doi:10.1371/ journal.pone.0115755

7The random sample are accessible as prevend.samp in the oibiostat R package.
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with RFFT score—there are approximately as many red dots with low RFFT scores as with
high RFFT scores in a given age range. In other words, for subsets of participants with ap-
proximately similar ages, statin use may not be associated with RFFT. Multiple regression
provides a way to estimate the association of statin use with RFFT while adjusting for age;
i.e., accounting for the underlying relationship between age and statin use.
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7.2 Simple versus multiple regression

A simple linear regression model can be fit for an initial examination of the association
between statin use and RFFT score,

E(RFFT) = β0 + βStatin(Statin).

RFFT scores in prevend.samp are approximately normally distributed, ranging be-
tween approximately 10 and 140, with no obvious outliers (Figure 7.2(a)). The least
squares regression line shown in Figure 7.2(b) has a negative slope, which suggests a pos-
sible negative association.
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Figure 7.2: (a) Histogram of RFFT scores. (b) Scatterplot of RFFT score
versus statin use in prevend.samp. The variable Statin is coded 1 for statin
users, and 0 otherwise.

Table 7.3 gives the parameter estimates of the least squares line, and indicates that
the association between RFFT score and statin use is highly significant. On average, statin
users score approximately 10 points lower on the RFFT. However, even though the as-
sociation is statistically significant, it is potentially misleading since the model does not
account for the underlying relationship between age and statin use. The association be-
tween age and statin use visible from Figure 7.1 is even more apparent in Figure 7.4,
which shows that the median age of statin users is about 10 years higher than the median
age of individuals not using statins.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.7143 1.3808 51.21 0.0000

Statin -10.0534 2.8792 -3.49 0.0005

Table 7.3: R summary output for the simple regression model of RFFT
versus statin use in prevend.samp.

Multiple regression allows for a model that incorporates both statin use and age,

E(RFFT) = β0 + βStatin(Statin) + βAge(Age).
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Figure 7.4: Boxplot of age by statin use in prevend.samp. The variable
Statin is coded 1 for statin users, and 0 otherwise.

In statistical terms, the association between RFFT and Statin is being estimated after ad-
justing for Age. This is an example of one of the more important applications of multiple
regression: estimating an association between a response variable and primary predic-
tor of interest while adjusting for possible confounders. In this setting, statin use is the
primary predictor of interest.

The principles and assumptions behind the multiple regression model are introduced
more formally in Section 7.4, along with the method used to estimate the coefficients.
Table 7.5 shows the parameter estimates for the model from R.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 137.8822 5.1221 26.92 0.0000

Statin 0.8509 2.5957 0.33 0.7432
Age -1.2710 0.0943 -13.48 0.0000

Table 7.5: R summary output for the multiple regression model of RFFT
versus statin use and age in prevend.samp.

 Example 7.1 Using the parameter estimates in Table 7.5, write the prediction equa-
tion for the linear model. How does the predicted RFFT score for a 67-year-old not
using statins compare to that of an individual of the same age who does use statins?

The equation of the linear model is�RFFT = 137.8822 + 0.8509(Statin)− 1.2710(Age).

The predicted RFFT score for a 67-year-old not using statins (Statin = 0) is�RFFT = 137.8822 + (0.8509)(0)− (1.2710)(67) = 52.7252.
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The predicted RFFT score for a 67-year-old using statins (Statin = 1) is

�RFFT = 137.8822 + (0.8509)(1)− (1.2710)(67) = 53.5761.

The two calculations differ only by the value of the coefficient βStatin, 0.8509.8 Thus,
for two individuals who are the same age, the model predicts that RFFT score will be
0.8509 higher in the individual taking statins; statin use is associated with a small
increase in RFFT score.

 Example 7.2 Suppose two individuals are both taking statins; one individual is 50
years of age, while the other is 60 years of age. Compare their predicted RFFT scores.

From the model equation, the coefficient of age βAge is -1.2710; an increase in one
unit of age (i.e., one year) is associated with a decrease in RFFT score of -1.2710,
when statin use is the same. Thus, the individual who is 60 years of age is predicted
to have an RFFT score that is about 13 points lower ((−1.2710)(10) = −12.710) than
the individual who is 50 years of age.

This can be confirmed numerically:

The predicted RFFT score for a 50-year-old using statins is

�RFFT = 137.8822 + (0.8509)(1)− (1.2710)(50) = 75.1831.

The predicted RFFT score for a 60-year-old using statins is

�RFFT = 137.8822 + (0.8509)(1)− (1.2710)(60) = 62.4731.

The scores differ by 62.4731− 75.1831 = −12.710.⊙
Guided Practice 7.3 What does the intercept represent in this model? Does the
intercept have interpretive value?9

As in simple linear regression, t-statistics can be used to test hypotheses about the
slope coefficients; for this model, the two null hypotheses are H0 : βStatin = 0 and H0 :
βAge = 0. The p-values for the tests indicate that at significance level α = 0.05, the associa-
tion between RFFT score and statin use is not statistically significant, but the association
between RFFT score and age is significant.

In a clinical setting, the interpretive focus lies on reporting the nature of the associ-
ation between the primary predictor and the response and specifying which confounders
have been adjusted for. The results of the analysis might be summarized as follows—

Although the use of statins appeared to be associated with lower RFFT
scores when no adjustment was made for possible confounders, statin use is
not significantly associated with RFFT score in a regression model that adjusts
for age.

8In most cases, predictions do not need to be calculated to so many significant digits, since the coefficients
are only estimates. This example uses the additional precision to illustrate the role of the coefficients.

9The intercept represents an individual with value 0 for both Statin and Age; i.e., an individual not using
statins with age of 0 years. It is not reasonable to predict RFFT score for a newborn, or to assess statin use; the
intercept is meaningless and has no interpretive value.
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The results shown in Table 7.5 do not provide information about either the quality of
the model fit. The next section describes the residual plots that can be used to check model
assumptions and the use of R2 to estimate how much of the variability in the response
variable is explained by the model.

There is an important aspect of these data that should not be overlooked. The data do
not come from a study in which participants were followed as they aged; i.e., a longitudi-
nal study. Instead, this study was a cross-sectional study, in which patient age, statin use,
and RFFT score were recorded for all participants during a short time interval. While the
results of the study support the conclusion that older patients tend to have lower RFFT
scores, they cannot be used to conclude that scores decline with age in individuals; there
were no repeated measurements of RFFT taken as individual participants aged. Older
patients come from an earlier birth cohort, and it is possible, for instance, that younger
participants have more post-secondary school education or better health practices gener-
ally; such a cohort effect may have some explanatory effect on the observed association.
The details of how a study is designed and how data are collected should always be taken
into account when interpreting study results.
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7.3 Evaluating the fit of a multiple regression model

7.3.1 Using residuals to check model assumptions

The assumptions behind multiple regression are essentially the same as the four assump-
tions listed in Section 6.1 for simple linear regression. The assumption of linearity is ex-
tended to multiple regression by assuming that when only one predictor variable changes,
it is linearly related to the change in the response variable. Assumption 2 becomes the
slightly more general assumption that the residuals have approximately constant vari-
ance. Assumptions 3 and 4 do not change; it is assumed that the observations on each
case are independent and the residuals are approximately normally distributed.

Since it is not possible to make a scatterplot of a response variable against several
simultaneous predictors, residual plots become even more essential as tools for checking
modeling assumptions.

To assess the linearity assumption, examine plots of residuals against each of the pre-
dictors. These plots might show an nonlinear trend that could be corrected with a trans-
formation. The scatterplot of residual values versus age in Figure 7.6 shows no apparent
nonlinear trends. It is not necessary to assess linearity against a categorical predictor,
since a line drawn through two points (i.e., the means of the two groups) is necessarily
linear.
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Figure 7.6: Residuals versus age in the model for RFFT vs statins and age
in the PREVEND data.

Since each case has one predicted value and one residual, regardless of the number
of predictors, residuals can still be plotted against predicted values to assess the constant
variance assumption. The scatterplot in the left panel of Figure 7.7 shows that the variance
of the residuals is slightly smaller for lower predicted values of RFFT, but is otherwise
approximately constant.

Just as in simple regression, normal probability plots can be used to check the nor-
mality assumption of the residuals. The normal probability plot in the right panel of
Figure 7.7 shows that the residuals from the model are reasonably normally distributed,
with only slight departures from normality in the tails.

 Example 7.4 Section 1.7 featured a case study examining the evidence for ethnic
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Figure 7.7: Residual plots from the linear model for RFFT versus statin
use and age in prevend.samp.

discrimination in the amount of financial support offered by the State of Califor-
nia to individuals with developmental disabilities. Although an initial look at the
data suggested an association between expenditures and ethnicity, further analysis
suggested that age is a confounding variable for the relationship.

A multiple regression model can be fit to these data to model the association between
expenditures, age, and ethnicity in a subset that only includes data from Hispanics
and White non-Hispanics. Two residual plots from the model fit for

E(expenditures) = β0 + βethnicity(ethnicity) + βage(age)

are shown in Figure 7.8. From these plots, assess whether a linear regression model
is appropriate for these data.
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Figure 7.8: Residual versus fitted values plot and residual normal proba-
bility plot from the linear model for expenditures versus ethnicity and age
for a subset of dds.discr.
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The model assumptions are clearly violated. The residual versus fitted plot shows
obvious patterns; the residuals do not scatter randomly about the y = 0 line. Addi-
tionally, the variance of the residuals is not constant around the y = 0 line. As shown
in the normal probability plot, the residuals show marked departures from normal-
ity, particularly in the upper tail; although this skewing may be partially resolved
with a log transformation, the patterns in the residual versus fitted plot are more
problematic.

Recall that a residual is the difference between an observed value and expected
value; for an observation i, the residual equals yi − ŷi . Positive residuals occur when
a model’s predictions are larger than the observed value, and vice versa for negative
residuals. In the residual versus fitted plot, it can be seen that in the middle range of
predicted values, the model consistently underpredicts expenditures; on the upper
and lower ends, the model over-predicts. This is a particularly serious issue with the
model fit.

A linear regression model is not appropriate for these data.

7.3.2 Using R2 and adjusted R2 with multiple regression

Section 6.3.2 provided two definitions of the R2 statistic—it is the square of the correlation
coefficient r between a response and the single predictor in simple linear regression, and
equivalently, it is the proportion of the variation in the response variable explained by the
model. In statistical terms, the second definition can be written as

R2 =
Var(yi)−Var(ei)

Var(yi)
= 1− Var(ei)

Var(yi)
,

where yi and ei denote the response and residual values for the ith case.

The first definition cannot be used in multiple regression, since there is a correlation
coefficient between each predictor and the response variable. However, since there is a
single set of residuals, the second definition remains applicable.

Although R2 can be calculated directly from the equation, it is rarely calculated by
hand since computing software includes R2 as a standard part of the summary output
for a regression model.10 In the model with response RFFT and predictors Statin and
Age, R2 = 0.2852. The model explains almost 29% of the variability in RFFT scores, a
considerable improvement over the model with Statin alone (R2 = 0.0239).

Adding a variable to a regression model always increases the value of R2. Sometimes
that increase is large and clearly important, such as when age is added to the model for
RFFT scores. In other cases, the increase is small, and may not be worth the added com-
plexity of including another variable. The adjusted R-squared is often used to balance
predictive ability with complexity in a multiple regression model. Like R2, the adjusted
R2 is routinely provided in software output.

10In R and other software, R2 is typically labeled ’multiple R-squared’.
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Adjusted R2 as a tool for model assessment

The adjusted R2 is computed as

R2
adj = 1−

Var(ei)/(n− p − 1)
Var(yi)/(n− 1)

= 1− Var(ei)
Var(yi)

× n− 1
n− p − 1

,

where n is the number of cases used to fit the model and p is the number of
predictor variables in the model.

Essentially, the adjusted R2 imposes a penalty for including additional predictors
that do not contribute much towards explaining the observed variation in the response
variable. The value of the adjusted R2 in the model with both Statin and Age is 0.2823,
which is essentially the same as the R2 value of 0.2852. The additional predictor Age
considerably increases the strength of the model, resulting in only a small penalty to the
R2 value.

While the adjusted R2 is useful as a statistic for comparing models, it does not have
an inherent interpretation like R2. Students often confuse the interpretation of R2 and
adjusted R2; while the two are similar, adjusted R2 is not the proportion of variation in
the response variable explained by the model. The use of adjusted R2 for model selection
will be discussed in Section 7.8.
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7.4 The general multiple linear regression model

This section provides a compact summary of the multiple regression model and contains
more mathematical detail than most other sections; the next section, Section 7.5, discusses
categorical predictors with more than two levels. The ideas outlined in this section and
the next are illustrated with an extended analysis of the PREVEND data in Section 7.6.

7.4.1 Model parameters and least squares estimation

For multiple regression, the data consist of a response variable Y and p explanatory vari-
ables X1,X2, . . . ,Xp. Instead of the simple regression model

Y = β0 + β1X + ε,

multiple regression has the form

Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βpXp + ε,

or equivalently
E(Y ) = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βpXp,

since the normally distributed error term ε is assumed to have mean 0. Each predictor xi
has an associated coefficient βi . In simple regression, the slope coefficient β captures the
change in the response variable Y associated with a one unit change in the predictor X. In
multiple regression, the coefficient βj of a predictor Xj denotes the change in the response
variable Y associated with a one unit change in Xj when none of the other predictors
change; i.e., each β coefficient in multiple regression plays the role of a slope, as long as
the other predictors are not changing.

Multiple regression can be thought of as the model for the mean of the response Y in
a population where the mean depends on the values of the predictors, rather than being
constant. For example, consider a setting with two binary predictors such as statin use and
sex; the predictors partition the population into four subgroups, and the four predicted
values from the model are estimates of the mean in each of the four groups.⊙

Guided Practice 7.5 Table 7.9 shows an estimated regression model for RFFT with
predictors Statin and Gender, where Gender is coded 0 for males and 1 for females.11

Based on the model, what are the estimated mean RFFT scores for the four groups
defined by these two categorical predictors?12

Datasets for multiple regression have n cases, usually indexed algebraically by i,
where i takes on values from 1 to n; 1 denotes the first case in the dataset and n de-
notes the last case. The dataset prevend.samp contains n = 500 observations. Algebraic
representations of the data must indicate both the case number and the predictor in the
set of p predictors. For case i in the dataset, the variable Xij denotes predictor Xj ; the
response for case i is simply Yi , since there can only be one response variable. The dataset

11Until recently, it was common practice to use gender to denote biological sex. Gender is different than
biological sex, but this text uses the original names in published datasets.

12The prediction equation for the model is �RFFT = 70.41−9.97(Statin)+0.61(Gender). Both Statin and Gender
can take on values of either 0 or 1; the four possible subgroups are statin non-user / male (0, 0), statin non-user
/ female (0, 1), statin user / male (1, 0), statin user / female (1, 1). Predicted RFFT scores for these groups are
70.41, 71.02, 60.44, and 61.05, respectively.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.4068 1.8477 38.11 0.0000

Statin -9.9700 2.9011 -3.44 0.0006
Gender 0.6133 2.4461 0.25 0.8021

Table 7.9: R summary output for the multiple regression model of RFFT
versus statin use and sex in prevend.samp.

prevend.samp has many possible predictors, some of which are examined later in this
chapter. The analysis in Section 7.2 used p = 2 predictors, Statin and Age.

Just as in Chapter 2, upper case letters are used when thinking of data as a set of ran-
dom observations subject to sampling from a population, and lower case letters are used
for observed values. In a dataset, it is common for each row to contain the information
on a single case; the observations in row i of a dataset with p predictors can be written as
(yi ,xi1,xi2, . . . ,xip).

For any given set of estimates b1,b2, . . . ,bp and predictors xi1,xi2, . . . ,xip, predicted
values of the response can be calculated using

ŷi = b0 + b1xi1 + b2xi2 + · · ·+ bpxip,

where b0,b1, . . . , bp are estimates of the coefficients β0,β1, . . . ,βp obtained using the princi-
ple of least squares estimation.

As in simple regression, each prediction has an associated residual, which is the dif-
ference between the observed value yi and the predicted value ŷi , or ei = yi − ŷi . The least
squares estimate of the model is the set of estimated coefficients b0,b1, . . .bp that mini-
mizes e2

1 + e2
2 + · · ·e2

n. Explicit formulas for the estimates involve advanced matrix theory,
but are rarely used in practice. Instead, estimates are calculated using software such as as
R, Stata, or Minitab.

7.4.2 Hypothesis tests and confidence intervals

Using t-tests for individual coefficients

The test of the null hypothesisH0 : βk = 0 is a test of whether the predictor Xk is associated
with the response variable. When a coefficient of a predictor equals 0, the predicted value
of the response does not change when the predictor changes; i.e., a value of 0 indicates
there is no association between the predictor and response. Due to the inherent variability
in observed data, an estimated coefficient bk will almost never be 0 even when the model
coefficient βk is. Hypothesis testing can be used to assess whether the estimated coefficient
is significantly different from 0 by examining the ratio of the estimated coefficient to its
standard error.

When the assumptions of multiple regression hold, at least approximately, this ratio
has a t-distribution with n−(p+1) = n−p−1 degrees of freedom when the model coefficient
is 0. The formula for the degrees of freedom follows a general rule that appears through-
out statistics—the degrees of freedom for an estimated model is the number of cases in
the dataset minus the number of estimated parameters. There are p+ 1 parameters in the
multiple regression model, one for each of the p predictors and one for the intercept.
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Sampling distributions of estimated coefficients

Suppose
ŷ = b0 + b1xi + b2xi + · · ·+ bpxi

is an estimated multiple regression model from a dataset with n observations on
the response and predictor variables, and let bk be one of the estimated coeffi-
cients. Under the hypothesis H0 : βk = 0, the standardized statistic

bk
s.e.(bk)

has a t-distribution with n− p − 1 degrees of freedom.

This sampling distribution can be used to conduct hypothesis tests and construct
confidence intervals.

Testing a hypothesis about a regression coefficient

A test of the two-sided hypothesis

H0 : βk = 0 vs. HA : βk , 0

is rejected with significance level α when

|bk |
s.e.(bk)

> t?df,

where t?df is the point on a t-distribution with n − p − 1 degrees of freedom and
area (1−α/2) in the left tail.

For one-sided tests, t?df is the point on a t-distribution with n−p−1 degrees of freedom
and area (1−α) in the left tail. A one-sided test of H0 against HA : βk > 0 rejects when the
standardized coefficient is greater than t?df; a one-sided test ofH0 againstHA : βk < 0 rejects
when the standardized coefficient is less than −t?df.

Confidence intervals for regression coefficient

A two-sided 100(1−α)% confidence interval for the model coefficient βk is

bk ± s.e.(bk)× t?df.

The F-statistic for an overall test of the model

When all the model coefficients are 0, the predictors in the model, considered as a group,
are not associated with the response; i.e., the response variable is not associated with any
linear combination of the predictors. The F-statistic is used to test this null hypothesis of
no association, using the following idea.



7.4. THE GENERAL MULTIPLE LINEAR REGRESSION MODEL 291

The variability of the predicted values about the overall mean response can be esti-
mated by

MSM =
∑
i(ŷi − y)2

p
.

In this expression, p is the number of predictors and is the degrees of freedom of the
numerator sum of squares (derivation not given here). The term MSM is called the model
sum of squares because it reflects the variability of the values predicted by the model
(ŷi) about the mean (y) response.13 In an extreme case, MSM will have value 0 when all
the predicted values coincide with the overall mean; in this scenario, a model would be
unnecessary for making predictions, since the average of all observations could be used to
make a prediction.

The variability in the residuals can be measured by

MSE =
∑
i(yi − ŷi)2

n− p − 1
.

MSE is called the mean square of the errors since residuals are the observed ‘errors’, the
differences between predicted and observed values.

When MSM is small compared to MSE, the model has captured little of the variability
in the data, and the model is of little or no value. The F-statistic is given by

F =
MSM
MSE

.

The formula is not used for calculation, since the numerical value of the F-statistic is
a routine part of the output of regression software.

The F-statistic in regression

The F-statistic in regression is used to test the null hypothesis

H0 : β1 = β2 = · · · = βp = 0

against the alternative that at least one of the coefficients is not 0.
Under the null hypothesis, the sampling distribution of the F-statistic is an F-
distribution with parameters (p,n − p − 1), and the null hypothesis is rejected if
the value of the F-statistic is in the right tail of the distribution of the sampling
distribution with area α, where α is the significance level of the test.

The F-test is inherently one-sided—deviations from the null hypothesis of any form
will push the statistic to the right tail of the F-distribution. The p-value from the right
tail of the F-distribution should never be doubled. Students also sometimes make the
mistake of assuming that if the null hypothesis of the F-test is rejected, all coefficients
must be non-zero, instead of at least one. A significant p-value for the F-statistic suggests
that the predictor variables in the model, when considered as a group, are associated with
the response variable.

In practice, it is rare for the F-test not to reject the null hypothesis, since most regres-
sion models are used in settings where a scientist has prior evidence that at least some of
the predictors are useful.

13It turns out that y is also the mean of the predicted values.
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7.5 Categorical predictors with more than two levels

In the initial model fit with the PREVEND data, the variable Statin is coded 0 if the
participant was not using statins, and coded 1 if the participant was a statin user. The
category coded 0 is referred to as the reference category; in this model, statin non-users
(Statin = 0) are the reference category. The estimated coefficient βStatin is the change in
the average response between the reference category and the category Statin = 1.

Since the variable Statin is categorical, the numerical codes 0 and 1 are simply la-
bels for statin non-users and users. The labels can be specified more explicitly in software.
For example, in R, categorical variables can be coded as factors; the levels of the variable
are displayed as text (such as "NonUser" or "User"), while the data remain stored as in-
tegers. The R output with the variable Statin.factor is shown in Table 7.10, where 0
corresponds to the label "NonUser" and 1 corresponds to "User". The predictor variable is
now labeled Statin.factorUser; the estimate -10.05 is the change in mean RFFT from the
"NonUser" (reference) category to the "User" category. Note how the reference category is
not explicitly labeled; instead, it is contained within the intercept.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.7143 1.3808 51.21 0.0000

Statin.factorUser -10.0534 2.8792 -3.49 0.0005

Table 7.10: R summary output for the simple regression model of RFFT
versus statin use in prevend.samp, with Statin converted to a factor called
Statin.factor that has levels NonUser and User.

For a categorical variable with two levels, estimates from the regression model re-
main the same regardless of whether the categorical predictor is treated as numerical or
not. A "one unit change" in the numerical sense corresponds exactly to the switch between
the two categories. However, this is not true for categorical variables with more than two
levels.

This idea will be explored with the categorical variable Education, which indicates
the highest level of education that an individual completed in the Dutch educational sys-
tem: primary school, lower secondary school, higher secondary education, or university
education. In the PREVEND dataset, educational level is coded as either 0, 1, 2, or 3,
where 0 denotes at most a primary school education, 1 a lower secondary school educa-
tion, 2 a higher secondary education, and 3 a university education. Figure 7.11 shows the
distribution of RFFT by education level; RFFT scores tend to increase as education level
increases.

In a regression model with a categorical variable with more than two levels, one of
the categories is set as the reference category, just as in the setting with two levels for a
categorical predictor. The remaining categories each have an estimated coefficient, which
corresponds to the estimated change in response relative to the reference category.

 Example 7.6 Is RFFT score associated with educational level? Interpret the coeffi-
cients from the following model. Table 7.12 provides the R output for the regression
model of RFFT versus educational level in prevend.samp. The variable Education
has been converted to Education.factor, which has levels Primary, LowerSecond,
HigherSecond, and Univ.
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Figure 7.11: Box plots for RFFT score by education level in prevend.samp.

It is clearest to start with writing the model equation:

�RFFT = 40.94+14.78(EduLowerSecond)+32.13(EduHigherSecond)+44.96(EduUniv)

Each of the predictor levels can be thought of as binary variables that can take on
either 0 or 1, where only one level at most can be a 1 and the rest must be 0, with
1 corresponding to the category of interest. For example, the predicted mean RFFT
score for individuals in the Lower Secondary group is given by

�RFFT = 40.94 + 14.78(1) + 32.13(0) + 44.96(0) = 55.72.

The value of the LowerSecond coefficient, 14.78, is the change in predicted mean
RFFT score from the reference category Primary to the LowerSecond category.

Participants with a higher secondary education scored approximately 32.1 points
higher on the RFFT than individuals with only a primary school education, and have
estimated mean RFFT score 40.94+32.13 = 73.07. Those with a university education
have estimated mean RFFT score 40.94 + 44.96 = 85.90.

The intercept value, 40.94, corresponds to the estimated mean RFFT score for indi-
viduals who at most completed primary school. From the regression equation,

�RFFT = 40.94 + 14.78(0) + 32.13(0) + 44.96(0) = 40.94.

The p-values indicate that the change in mean score between participants with only
a primary school education and any of the other categories is statistically significant.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.9412 3.2027 12.78 0.0000

Education.factorLowerSecond 14.7786 3.6864 4.01 0.0001
Education.factorHigherSecond 32.1335 3.7631 8.54 0.0000

Education.factorUniv 44.9639 3.6835 12.21 0.0000

Table 7.12: R summary output for the regression model of RFFT ver-
sus educational level in prevend.samp, with Education converted to a
factor called Education.factor that has levels Primary, LowerSecond,
HigherSecond, and Univ.

 Example 7.7 Suppose that the model for predicting RFFT score from educational
level is fitted with Education, using the original numerical coding with 0, 1, 2, and 3;
the R output is shown in Table 7.13. What does this model imply about the change
in mean RFFT between groups? Explain why this model is flawed.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.148 2.104 19.55 0.0000
Education 15.158 1.023 14.81 0.0000

Table 7.13: R summary output for the simple regression model of RFFT
versus educational level in prevend.samp, where Education is treated as
a numerical variable. Note that it would be incorrect to fit this model;
Table 7.12 shows the results from the correct approach.

According to this model, the change in mean RFFT between groups increases by
15.158 for any one unit change in Education. For example, the change in means be-
tween the groups coded 0 and 1 is necessarily equal to the change in means between
the groups coded 2 and 3, since the predictor changes by 1 in both cases.

It is unreasonable to assume that the change in mean RFFT score when comparing
the primary school group to the lower secondary group will be equal to the differ-
ence in means between the higher secondary group and university group. The nu-
merical codes assigned to the groups are simply short-hand labels, and are assigned
arbitrarily. As a consequence, this model would not provide consistent results if the
numerical codes were altered; for example, if the primary school group and lower
secondary group were relabeled such that the predictor changes by 2, the estimated
difference in mean RFFT would change.

Categorical variables can be included in multiple regression models with other pre-
dictors, as is shown in the next section. Section 7.9 discusses the connection between
ANOVA and regression models with only one categorical predictor.
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7.6 Reanalyzing the PREVEND data

The earlier models fit to examine the association between cognitive ability and statin use
showed that considering statin use alone could be misleading. While older participants
tended to have lower RFFT scores, they were also more likely to be taking statins. Age was
found to be a confounder in this setting—is it the only confounder?

Potential confounders are best identified by considering the larger scientific context
of the analysis. For the PREVEND data, there are two natural candidates for potential
confounders: education level and presence of cardiovascular disease. The use of medica-
tion is known to vary by education levels, often because individuals with more education
tend to have higher incomes and consequently, better access to health care; higher educa-
tional levels are associated with higher RFFT scores, as shown by model 7.12. Individuals
with cardiovascular disease are often prescribed statins to lower cholesterol; cardiovascu-
lar disease can lead to vascular dementia and cognitive decline.

Table 7.14 contains the result of a regression of RFFT with statin use, adding the
possible confounders age, educational level, and presence of cardiovascular disease. The
variables Statin, Education and CVD have been converted to factors, and Age is a continu-
ous predictor.

The coefficient for statin use shows the importance of adjusting for confounders. In
the initial model for RFFT that only included statin use as a predictor, statin use was sig-
nificantly associated with decreased RFFT scores. After adjusting for age, statins were
no longer significantly associated with RFFT scores, but the model suggested that statin
use could be associated with increased RFFT scores. This final model suggests that, after
adjusting for age, education, and the presence of cardiovascular disease, statin use is as-
sociated with an increase in RFFT scores of approximately 4.7 points. The p-value for the
slope coefficient for statin use is 0.056, which suggests moderately strong evidence of an
association (significant at α = 0.10, but not α = 0.05).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 99.0351 6.3301 15.65 0.0000

Statin.factorUser 4.6905 2.4480 1.92 0.0559
Age -0.9203 0.0904 -10.18 0.0000

Education.factorLowerSecond 10.0883 3.3756 2.99 0.0029
Education.factorHigherSecond 21.3015 3.5777 5.95 0.0000

Education.factorUniv 33.1246 3.5471 9.34 0.0000
CVD.factorPresent -7.5665 3.6516 -2.07 0.0388

Table 7.14: R summary output for the multiple regression model of RFFT
versus statin use, age, education, and presence of cardiovascular disease
in prevend.samp.

The R2 for the model is 0.4355; a substantial increase from the model with only statin
use and age as predictors, which had an R2 of 0.2852. The adjusted R2 for the model is
0.4286, close to the R2 value, which suggests that the additional predictors increase the
strength of the model enough to justify the additional complexity.

Figure 7.15 shows a plot of residuals vs predicted RFFT scores from the model in
Table 7.14 and a normal probability plot of the residuals. These plots show that the model
fits the data reasonably well. The residuals show a slight increase in variability for larger
predicted values, and the normal probability plot shows the residuals depart slightly from
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normality in the extreme tails. Model assumptions never hold exactly, and the possible
violations shown in this figure are not sufficient reasons to discard the model.
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Figure 7.15: A histogram and normal probability plot of the residuals
from the linear model for RFFT vs. statin use, age, educational level and
presence of cardiovascular disease in the PREVEND data.

It is quite possible that even the model summarized in Table 7.14 is not the best one to
understand the association of cognitive ability with statin use. There be other confounders
that are not accounted for. Possible predictors that may be confounders but have not been
examined are called residual confounders. Residual confounders can be other variables
in a dataset that have not been examined, or variables that were not measured in the
study. Residual confounders exist in almost all observational studies, and represent one
of the main reasons that observational studies should be interpreted with caution. A
randomized experiment is the best way to eliminate residual confounders. Randomization
ensures that, at least on average, all predictors are not associated with the randomized
intervention, which eliminates one of the conditions for confounding. A randomized trial
may be possible in some settings; there have been many randomized trials examining the
effect of using statins. However, in many other settings, such as a study of the association
of marijuana use and later addiction to controlled substances, randomization may not be
possible or ethical. In those instances, observational studies may be the best available
approach.

7.7 Interaction in regression

An important assumption in the multiple regression model

y = β0 + β1x1 + β2x2 + ...+ βpxp + ε

is that when one of the predictor variables xj changes by 1 unit and none of the other
variables change, the predicted response changes by βj , regardless of the values of the
other variables. A statistical interaction occurs when this assumption is not true, such
that the relationship of one explanatory variable xj with the response depends on the
particular value(s) of one or more other explanatory variables.
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Interaction is most easily demonstrated in a model with two predictors, where one
of the predictors is categorical and the other is numerical.14 Consider a model that might
be used to predict total cholesterol level from age and diabetes status (either diabetic or
non-diabetic):

E(TotChol) =β0 + β1(Age) + β2(Diabetes). (7.8)

Table 7.16 shows the R output for a regression estimating model 7.8, using data from
a sample of 500 adults from the NHANES dataset (nhanes.samp.adult.500). Total choles-
terol (TotChol) is measured in mmol/L, Age is recorded in years, and Diabetes is a factor
level with the levels No (non-diabetic) and Yes (diabetic) where 0 corresponds to No and 1
corresponds to Yes.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.8000 0.1561 30.75 0.0000

Age 0.0075 0.0030 2.47 0.0137
DiabetesYes -0.3177 0.1607 -1.98 0.0487

Table 7.16: Regression of total cholesterol on age and diabetes, using
nhanes.samp.adult.500.

 Example 7.9 Using the output in Table 7.16, write the model equation and inter-
pret the coefficients for age and diabetes. How does the predicted total cholesterol
for a 60-year-old individual compare to that of a 50-year-old individual, if both have
diabetes? What if both individuals do not have diabetes?

�T otChol = 4.80 + 0.0075(Age)− 0.32(DiabetesY es)

The coefficient for age indicates that with each increasing year of age, predicted
total cholesterol increases by 0.0075 mmol/L. The coefficient for diabetes indicates
that diabetics have an average total cholesterol that is 0.32 mmol/L lower than non-
diabetic individuals.

If both individuals have diabetes, then the change in predicted total cholesterol level
can be determined directly from the coefficient for Age. An increase in one year of
age is associated with a 0.0075 increase in total cholesterol; thus, an increase in ten
years of age is associated with 10(0.0075) = 0.075 mmol/L increase in predicted total
cholesterol.

The calculation does not differ if both individuals are non-diabetic. According to
the model, the relationship between age and total cholesterol remains the same re-
gardless of the values of the other variable in the model.

 Example 7.10 Using the output in Table 7.16, write two separate model equations:
one for diabetic individuals and one for non-diabetic individuals. Compare the two
models.

14Interaction effects between numerical variables and between more than two variables can be complicated
to interpret. A more complete treatment of interaction is best left to a more advanced course; this text will only
examine interaction in the setting of models with one categorical variable and one numerical variable.
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For non-diabetics (Diabetes = 0), the linear relationship between average choles-
terol and age is �TotChol = 4.80 + 0.0075(Age)− 0.32(0) = 4.80 + 0.0075(Age).

For diabetics (Diabetes = 1), the linear relationship between average cholesterol
and age is �TotChol = 4.80 + 0.0075(Age)− 0.32(1) = 4.48 + 0.0075(Age).

The lines predicting average cholesterol as a function of age in diabetics and non-
diabetics are parallel, with the same slope and different intercepts. While predicted
total cholesterol is higher overall in non-diabetics (as indicated by the higher inter-
cept), the rate of change in predicted average total cholesterol by age is the same for
both diabetics and non-diabetics.

This relationship can be expressed directly from the model equation 7.8. For non-
diabetics, the population regression line is E(TotChol) = β0 + β1(Age). For diabetics,
the line is E(TotChol) = β0 +β1(Age)+β2 = β0 +β2 +β1(Age). The lines have the same
slope β1 but intercepts β0 and β0 + β2.

However, a model that assumes the relationship between cholesterol and age does
not depend on diabetes status might be overly simple and potentially misleading. Fig-
ure 7.17(b) shows a scatterplot of total cholesterol versus age where the least squares
models have been fit separately for non-diabetic and diabetic individuals. The blue line
in the plot is estimated using only non-diabetic individuals, while the red line was fit us-
ing data from diabetic individuals. The lines are not parallel, and in fact, have slopes with
different signs. The plot suggests that among non-diabetics, age is positively associated
with total cholesterol. Among diabetics, however, age is negatively associated with total
cholesterol.

With the addition of another parameter (commonly referred to as an interaction
term), a linear regression model can be extended to allow the relationship of one explana-
tory variable with the response to vary based on the values of other variables in the model.
Consider the model

E(TotChol) = β0 + β1(Age) + β2(Diabetes) + β3(Diabetes×Age). (7.11)

The interaction term allows the slope of the association with age to differ by diabetes
status. Among non-diabetics (Diabetes = 0), the model reduces to the earlier one,

E(TotChol) = β0 + β1(Age).

Among the diabetic participants, the model becomes

E(TotChol) = β0 + β1(Age) + β2 + β3(Age)

= β0 + β2 + (β1 + β3)(Age).

Unlike in the original model, the slopes of the population regression lines for non-
diabetics and diabetics are now different: β1 versus β1 + β3.

Table 7.18 shows the R output for a regression estimating model 7.11. In R, the syntax
Age:DiabetesYes represents the (Age × Diabetes) interaction term.

 Example 7.12 Using the output in Table 7.18, write the overall model equation, the
model equation for non-diabetics, and the model equation for diabetics.

The overall model equation is

�TotChol = 4.70 + 0.0096(Age) + 1.72(DiabetesYes)− 0.034(Age×DiabetesYes).
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Figure 7.17: Scatterplots of total cholesterol versus age in
nhanes.samp.adult.500, where blue represents non-diabetics and
red represents diabetics. Plot (a) shows the model equations written out
in Example 7.10, estimated from the entire sample of 500 individuals.
Plot (b) shows least squares models that are fit separately; coefficients
of the blue line are estimated using only data from non-diabetics, while
those of the red line are estimated using only data from diabetics.

For non-diabetics (Diabetes = 0), the linear relationship between average choles-
terol and age is

�TotChol = 4.70 + 0.0096(Age) + 1.72(0)− 0.034(Age× 0) = 4.70 + 0.0096(Age).

For diabetics (Diabetes = 1), the linear relationship between average cholesterol
and age is

�TotChol = 4.70 + 0.0096(Age) + 1.72(1)− 0.034(Age× 1) = 6.42− 0.024(Age).

The estimated equations for non-diabetic and diabetic individuals show the same
qualitative behavior seen in Figure 7.17(b), where the slope is positive in non-diabetics
and negative in diabetics. However, note that the lines plotted in the figure were estimated
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6957 0.1597 29.40 0.0000

Age 0.0096 0.0031 3.10 0.0020
DiabetesYes 1.7187 0.7639 2.25 0.0249

Age:DiabetesYes -0.0335 0.0123 -2.73 0.0067

Table 7.18: Regression of total cholesterol on age and diabetes with an
interaction term, using nhanes.samp.adult.500

from two separate model fits on non-diabetics and diabetics; in contrast, the equations
from the interaction model are fit using data from all individuals.

It is more efficient to model the data using a single model with an interaction term
than working with subsets of the data.15 Additionally, using a single model allows for the
calculation of a t-statistic and p-value that indicates whether there is statistical evidence of
an interaction. The p-value for the Age:Diabetes interaction term is significant at the α =
0.05 level. Thus, the estimated model suggests there is strong evidence for an interaction
between age and diabetes status when predicting total cholesterol.

Residual plots can be used to assess the quality of the model fit. Figure 7.19 shows
that the residuals have roughly constant variance in the region with the majority of the
data (predicted values between 4.9 and 5.4 mmol/L). However, there are more large pos-
itive residuals than large negative residuals, which suggests that the model tends to un-
derpredict; i.e., predict values of TotChol that are smaller than the observed values.16

Figure 7.20 shows that the residuals do not fit a normal distribution in the tails. In the
right tails, the sample quantiles are larger than the theoretical quantiles, implying that
there are too many large residuals. The left tail is a better fit; however, there are too few
large negative residuals since the sample quantiles in the left tail are closer to 0 than the
theoretical quantiles.

It is also important to note that the model explains very little of the observed variabil-
ity in total cholesterol—the multiple R2 of the model is 0.032. While the model falls well
short of perfection, it may be reasonably adequate in applied settings. In the setting of a
large study, such as one to examine factors affecting cholesterol levels in adults, a model
like the one discussed here is typically a starting point for building a more refined model.
Given these results, a research team might proceed by collecting more data. Regression
models are commonly used as tools to work towards understanding a phenomenon, and
rarely represent a ’final answer’.

There are some important general points that should not be overlooked when in-
terpreting this model. The data cannot be used to infer causality; the data simply show
associations between total cholesterol, age, and diabetes status. Each of the NHANES sur-
veys are cross-sectional; they are administered to a sample of US residents with various
ages and other demographic features during a relatively short period of time. No single
individual has had his or her cholesterol levels measured over a period of many years, so
the model slope for diabetes is not indicative of an individual’s cholesterol level declining
(or increasing) with age.

Finally, the interpretation of a model often requires additional contextual informa-
tion that is relevant to the study population but not captured in the dataset. What might

15In more complex settings, such as those with potential interaction between several variables or between
two numerical variables, it may not be clear how to subset the data in a way that reveals interactions. This is
another advantage to using an interaction term and single model fit to the entire dataset.

16Recall that model residuals are calculated as yi − ŷi ; i.e., TotCholi − �TotCholi .
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Figure 7.19: A scatterplot of residuals versus predicted values in the
model for total cholesterol that includes age, diabetes status, and the in-
teraction of age and diabetes status.
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Figure 7.20: A histogram of the residuals and a normal probability plot of
the residuals from the linear model for total cholesterol versus age, dia-
betes status, and the interaction of age and diabetes status.

explain increased age being associated with lower cholesterol for diabetics, but higher
cholesterol for non-diabetics? The guidelines for the use of cholesterol-lowering statins
suggest that these drugs should be prescribed more often in older individuals, and even
more so in diabetic individuals. It is a reasonable speculation that the interaction between
age and diabetes status seen in the NHANES data is a result of more frequent statin use
in diabetic individuals.
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7.8 Model selection for explanatory models

Previously, multiple regression modeling was shown in the context of estimating an asso-
ciation while adjusting for possible confounders. Another application of multiple regres-
sion is explanatory modeling, in which the goal is to construct a model that explains the
observed variation in the response variable. In this context, there is no pre-specified pri-
mary predictor of interest; explanatory modeling is concerned with identifying predictors
associated with the response. It is typically desirable to have a small model that avoids
including variables which do not contribute much towards the R2.

The intended use of a regression model influences the way in which a model is se-
lected. Approaches to model selection vary from those based on careful study of a rel-
atively small set of predictors to purely algorithmic methods that screen a large set of
predictors and choose a final model by optimizing a numerical criterion. Algorithmic
selection methods have gained popularity as researchers have been able to collect larger
datasets, but the choice of an algorithm and the optimization criterion require more ad-
vanced material and are not covered here. This section illustrates model selection in the
context of a small set of potential predictors using only the tools and ideas that have been
discussed earlier in this chapter and in Chapter 6.

Generally, model selection for explanatory modeling follows these steps:

1. Data exploration. Using numerical and graphical approaches, examine both the dis-
tributions of individual variables and the relationships between variables.

2. Initial model fitting. Fit an initial model with the predictors that seem most highly
associated with the response variable, based on the data exploration.

3. Model comparison. Work towards a model that has the highest adjusted R2.

– Fit new models without predictors that were either not statistically significant
or only marginally so and compare the adjusted R2 between models; drop vari-
ables that decrease the adjusted R2.

– If the initial set of variables is relatively small, it is prudent to add variables
not in the initial model and check the adjusted R2; add variables that increase
the adjusted R2.

– Examine whether interaction terms may improve the adjusted R2.

4. Model assessment. Use residual plots to assess the fit of the final model.

The process behind model selection will be illustrated with a case study in which a
regression model is built to examine the association between the abundance of forest birds
in a habitat patch and features of a patch.

Abundance of forest birds: introduction

Habitat fragmentation is the process by which a habitat in a large contiguous space is di-
vided into smaller, isolated pieces; human activities such as agricultural development can
result in habitat fragmentation. Smaller patches of habitat are only able to support limited
populations of organisms, which reduces genetic diversity and overall population fitness.
Ecologists study habitat fragmentation to understand its effect on species abundance. The
forest.birds dataset in the oibiostat package contains a subset of the variables from a
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1987 study analyzing the effect of habitat fragmentation on bird abundance in the Latrobe
Valley of southeastern Victoria, Australia.17

The dataset consists of the following variables, measured for each of the 57 patches.

– abundance: average number of forest birds observed in the patch, as calculated from
several independent 20-minute counting sessions.

– patch.area: patch area, measured in hectares. 1 hectare is 10,000 square meters and
approximately 2.47 acres.

– dist.nearest: distance to the nearest patch, measured in kilometers.

– dist.larger: distance to the nearest patch larger than the current patch, measured
in kilometers.

– altitude: patch altitude, measured in meters above sea level.

– grazing.intensity: extent of livestock grazing, recorded as either "light", "less than
average", "average", "moderately heavy", or "heavy".

– year.of.isolation: year in which the patch became isolated due to habitat frag-
mentation.

– yrs.isolation: number of years since patch became isolated due to habitat frag-
mentation.18

The following analysis is similar to analyses that appear in Logan (2011)19 and Quinn
& Keough (2002).20 In the approach here, the grazing intensity variable is treated as a
categorical variable; Logan and Quinn & Keough treat grazing intensity as a numerical
variable, with values 1-5 corresponding to the categories. The implications of these ap-
proaches are discussed at the end of the section.

Data exploration

The response variable for the model is abundance. Numerical summaries calculated from
software show that abundance ranges from 1.5 to 39.6. Figure 7.21 shows that the distri-
bution of abundance is bimodal, with modes at small values of abundance and at between
25 and 30 birds. The median (21.0) and mean (19.5) are reasonably close, which confirms
the distribution is near enough to symmetric to be used in the model without a transfor-
mation. The boxplot confirms that the distribution has no outliers.

There are six potential predictors in the model; the variable year.of.isolation is
only used to calculate the more informative variable yrs.isolation. The plots in Fig-
ure 7.22 reveal right-skewing in patch.area, dist.nearest, dist.larger, and yrs.isolation;
these might benefit from a log transformation. The variable altitude is reasonably sym-
metric, and the predictor grazing.factor is categorical and so does not take transforma-
tions. Figure 7.23 shows the distributions of log.patch.area, log.dist.nearest, log.dist.larger,

17Loyn, R.H. 1987. "Effects of patch area and habitat on bird abundances, species numbers and tree health
in fragmented Victorian forests." Printed in Nature Conservation: The Role of Remnants of Native Vegetation.
Saunders DA, Arnold GW, Burbridge AA, and Hopkins AJM eds. Surrey Beatty and Sons, Chipping Norton,
NSW, 65-77, 1987.

18The Loyn study completed data collection in 1983; yrs.isolation = 1983− year.of.isolation.
19Logan, M., 2011. Biostatistical design and analysis using R: a practical guide. John Wiley & Sons, Ch. 9.
20Quinn, G.P. and Keough, M.J., 2002. Experimental design and data analysis for biologists. Cambridge

University Press, Ch. 6.
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Figure 7.21: A histogram (a) and boxplot (b) of abundance in the
forest.birds data.

and log.yrs.isolation, which were created through a natural log transformation of the
original variables. All four are more nearly symmetric. These will be more suitable for
inclusion in a model than the untransformed versions.
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Figure 7.22: Histograms and a barplot for the potential predictors of
abundance.

A scatterplot matrix can be useful for visualizing the relationships between the pre-
dictor and response variables, as well as the relationships between predictors. Each sub-
plot in the matrix is a simple scatterplot; all possible plots are shown, except for the plots
of a variable versus itself. The variable names are listed along the diagonal of the matrix,
and the diagonal divides the matrix into symmetric plots. For instance, the first plot in
the first row shows abundance on the vertical axis and log.area on the horizontal axis; the
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Figure 7.23: Histograms of the log-transformed versions of patch.area,
dist.nearest, dist.larger, and yrs.isolation.

first plot in the first column shows abundance on the horizontal axis and log.area on the
vertical axis. Note that for readability, grazing.intensity appears with values 1 - 5, with
1 denoting "light" and 5 denoting "heavy" grazing intensity.

The plots in the first row of Figure 7.24 show the relationships between abundance
and the predictors.21 There is a strong positive association between abundance with log.area,
and a strong negative association between abundance and log.yrs.isolation. The vari-
ables log.dist.near.patch and log.dist.larger seem weakly positively associated with
abundance. There is high variance of abundance and somewhat similar centers for the first
four categories, but abundance does clearly tend to be lower in the "high grazing" category
versus the others.

The variables log.dist.nearest and log.dist.larger appear strongly associated; a
model may only need one of the two, as they may be essentially "redundant" in explaining
the variability in the response variable.22 In this case, however, since both are only weakly
associated with abundance, both may be unnecessary in a model.

A numerical approach confirms some of the features observable from the scatter-
plot matrix. Table 7.25 shows the correlations between pairs of numerical variables in
the dataset. Correlations between abundance and log.area and between abundance and
log.yrs.isolation are relatively high, at 0.74 and -0.48, respectively. In contrast, the cor-
relation between abundance and the two variables log.dist.nearest and log.dist.larger
are much smaller, at 0.13 and 0.12. Additionally, the two potential predictors log.dist.nearest
and log.dist.larger have a relatively high correlation of 0.60.

21Traditionally, the response variable (i.e., the dependent variable) is plotted on the vertical axis; as a result,
it seems more natural to look at the first row where abundance is on the y-axis. It is equally valid, however, to
assess the association of abundance with the predictors from the plots in the first column.

22Typically, the predictor that is less strongly correlated with the response variable is the one that is "re-
dundant" and will be statistically insignificant when included in a model with the more strongly correlated
predictor. This is not always the case, and depends on the other variables in the model.



306 CHAPTER 7. MULTIPLE LINEAR REGRESSION

abundance

−2 2 6 4 6 8 2.0 3.0 4.0

0

10

20

30

40

−2
0
2
4
6

log.area

log.dist.nearest

4

5

6

7

4
5
6
7
8

log.dist.larger

altitude

100

150

200

250

2.0
2.5
3.0
3.5
4.0
4.5

log.yrs.isolation

0 10 30 4 5 6 7 100 200 1 2 3 4 5

1

2

3

4

5

grazing.intensity

Figure 7.24: Scatterplot matrix of abundance and the possible predic-
tors: log.area, log.dist.near.patch, log.dist.larger.patch, altitude,
log.yrs.isolation, and grazing.intensity.

Initial model fitting

Based on the data exploration, the initial model should include the variables log.area,
altitude, log.yrs.isolation, and grazing.intensity; a summary of this model is shown
in Table 7.26. The R2 and adjusted R2 for this model are, respectively, 0.728 and 0.688.
The model explains about 73% of the variability in abundance.

Two of the variables in the model are not statistically significant at the α = 0.05 level:
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abundance log.area log.dist.nearest log.dist.larger altitude log.yrs.isolation
abundance 1.00 0.74 0.13 0.12 0.39 -0.48

log.area 0.74 1.00 0.30 0.38 0.28 -0.25
log.dist.nearest 0.13 0.30 1.00 0.60 -0.22 0.02

log.dist.larger 0.12 0.38 0.60 1.00 -0.27 0.15
altitude 0.39 0.28 -0.22 -0.27 1.00 -0.29

log.yrs.isolation -0.48 -0.25 0.02 0.15 -0.29 1.00

Table 7.25: A correlation matrix for the numerical variables in
forest.birds.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.1509 6.3006 2.25 0.0293

log.area 3.1222 0.5648 5.53 0.0000
altitude 0.0080 0.0216 0.37 0.7126

log.yrs.isolation 0.1300 1.9193 0.07 0.9463
grazing.intensityless than average 0.2967 2.9921 0.10 0.9214

grazing.intensityaverage -0.1617 2.7535 -0.06 0.9534
grazing.intensitymoderately heavy -1.5936 3.0350 -0.53 0.6019

grazing.intensityheavy -11.7435 4.3370 -2.71 0.0094

Table 7.26: Initial model: regression of abundance on log.area, altitude,
log.yrs.isolation and grazing.intensity.

altitude and log.yrs.isolation. Only one of the categories of grazing.intensity (heavy
grazing) is highly significant.

Model comparison

First, fit models excluding the predictors that were not statistically significant: altitude
and log.yrs.isolation. Models excluding either variable have adjusted R2 of 0.69, and a
model excluding both variables has an adjusted R2 of 0.70, a small but noticeable increase
from the initial model. This suggests that these two variables can be dropped. At this
point, the working model includes only log.area and grazing.intensity; this model has
R2 = 0.727 and is shown in Table 7.27.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.7164 2.7674 5.68 0.0000

log.area 3.1474 0.5451 5.77 0.0000
grazing.intensityless than average 0.3826 2.9123 0.13 0.8960

grazing.intensityaverage -0.1893 2.5498 -0.07 0.9411
grazing.intensitymoderately heavy -1.5916 2.9762 -0.53 0.5952

grazing.intensityheavy -11.8938 2.9311 -4.06 0.0002

Table 7.27: Working model: regression of abundance on log.area and
grazing.intensity.

It is prudent to check whether the two distance-related variables that were initially
excluded might increase the adjusted R2, even though this seems unlikely. When either
or both of these variables are added, the adjusted R2 decreases from 0.70 to 0.69. Thus,
these variables are not added to the working model.
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In this working model, only one of the coefficients associated with grazing intensity
is statistically significant; when compared to the baseline grazing category (light graz-
ing), heavy grazing is associated with a reduced predicted mean abundance of 11.9 birds
(assuming that log.area is held constant). Individual categories of a categorical variable
cannot be dropped, so a data analyst has the choice of leaving the variable as is, or col-
lapsing the variable into fewer categories. For this model, it might be useful to collapse
grazing intensity into a two-level variable, with one category corresponding to the original
classification of heavy, and another category corresponding to the other four categories;
i.e., creating a version of grazing intensity that only has the levels "heavy" and "not heavy".
This is supported by the data exploration; a plot of abundance versus grazing.intensity
shows that the centers of the distributions of abundance in the lowest four grazing inten-
sity categories are roughly similar, relative to the center in the heavy grazing category.
The model with the binary version of grazing intensity, grazing.binary, is shown in Ta-
ble 7.28. The model with grazing.binary has adjusted R2 = 0.71, which is slightly larger
than 0.70 in the more complex model with grazing.intensity; the model explains 72%
of the variability in abundance (R2 = 0.724).

Incorporating an interaction term did not improve the model; adding a parameter
for the interaction between log.area and grazing.binary decreased the adjusted R2 to
0.709. Thus, the model shown in Table 7.28 is the final model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.3736 1.4507 10.60 0.0000

log.area 3.1822 0.4523 7.04 0.0000
grazing.binaryheavy -11.5783 1.9862 -5.83 0.0000

Table 7.28: Final model: regression of abundance on log.area and
grazing.binary.

Model assessment

The fit of a model can be assessed using various residual plots. Figure 7.29 shows a his-
togram and normal probability plot of the residuals for the final model. Both show that
the residuals follow the shape of a normal density in the middle range (between -10 and
10) but fit less well in the tails. There are too many large positive and large negative
values) residuals.

Figure 7.30 gives a more detailed look at the residuals, plotting the residuals against
predicted values and against the two predictors in the model, log.area and grazing.level.
Recall that residual values closer to 0 are indicative of a more accurate prediction; positive
values occur when the predicted value from the model is smaller than the observed value,
and vice versa for negative values. Residuals are a measure of the prediction error of a
model.

In the left plot, the large positive and large negative residuals visible from Figure 7.29
are evident; the large positive residuals occur across the range of predicted values, while
the large negative residuals occur around 20 (predicted birds). The middle plot shows
that the large positive and negative residuals occur at intermediate values of log.area;
i.e., for values of log.area between 0 and 4, or equivalently for values of area between
exp(0) = 1 and exp(4) = 54.5 hectares. In the same range, there are also relatively accurate
predictions; most residuals are between -5 and 5. Both the middle plot and the right plot
show that the prediction error is smaller for patches with heavy grazing than for patches
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Figure 7.29: Histogram and normal probability plot of residuals in the
model for abundance with predictors log.area and grazing.binary.
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Figure 7.30: Scatterplots of residuals versus predicted values and
residuals versus log.area, and a side-by-side boxplot of residuals by
grazing.binary. In the middle plot, red points correspond to values where
grazing level is "heavy" and blue points correspond to "not heavy".

where grazing intensity was between "light" and "moderately heavy". Patches with heavy
grazing are represented with red points; note how the red points mostly cluster around
the y = 0 line, with the exception of one outlier with a residual value of about 10.

Conclusions

The relatively large R2 for the final model (0.72) suggests that patch area and extent of
grazing (either heavy or not) explain a large amount of the observed variability in bird
abundance. Of the features measured in the study, these two are the most highly associ-
ated with bird abundance. Larger area is associated with an increase in abundance; when
grazing intensity does not change, the model predicts an increase in average abundance
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by 3.18 birds for every one unit increase in log area (or equivalently, for every exp(1)2.7
hectares increase in area). A patch with heavy grazing is estimated to have a mean abun-
dance of about 11.58 birds lower than a patch that has not been heavily grazed.

The residual plots imply that the final model may not be particularly accurate. For
most observations, the predictions are accurate between ±5 birds, but there are several
instances of overpredictions as high as around 10 and underpredictions of about 15. Ad-
ditionally, the accurate and inaccurate predictions occur at similar ranges of of log.area;
if the model only tended to be inaccurate at a specific range, such as for patches with
low area, it would be possible to provide clearer advice about when the model is unreli-
able. The residuals plots do suggest that the model is more reliable for patches with heavy
grazing, although there is a slight tendency towards overprediction.

Based on these results, the ecologists might decide to proceed by collecting more
data. Currently, the model seems to adequately explain the variability in bird abundance
for patches that have been heavily grazed, but perhaps there are additional variables that
are associated with bird abundance, especially in patches that are not heavily grazed.
Adding these variables might improve model residuals, in addition to raising R2.

Final considerations

Might a model including all the predictor variables be better than the final model with
only log.area and grazing.binary? The model is shown in Table 7.31. The R2 for this
model is 0.729 and the adjusted R2 is 0.676. While the R2 is essentially the same as for
the final model, the adjusted R2 is noticeably lower. The residual plots in Figure 7.32 do
not indicate that this model is an especially better fit, although the residuals are slightly
closer to normality. There would be little gained from using the larger model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.8120 9.9985 1.08 0.2852

log.area 2.9720 0.6587 4.51 0.0000
log.dist.near.patch 0.1390 1.1937 0.12 0.9078

log.dist.larger.patch 0.3496 0.9301 0.38 0.7087
altitude 0.0117 0.0233 0.50 0.6169

log.yrs.isolation 0.2155 1.9635 0.11 0.9131
grazing.intensityless than average 0.5163 3.2631 0.16 0.8750

grazing.intensityaverage 0.1344 2.9870 0.04 0.9643
grazing.intensitymoderately heavy -1.2535 3.2000 -0.39 0.6971

grazing.intensityheavy -12.0642 4.5657 -2.64 0.0112

Table 7.31: Full model: regression of abundance on all 6 predictors in
forest.birds.

In fact, there is an additional reason to avoid the larger model. When building re-
gression models, it is important to consider that the complexity of a model is limited by
sample size (i.e., the number of observations in the data). Attempting to estimate too
many parameters from a small dataset can produce a model with unreliable estimates;
the model may be ’overfit’, in the sense that it fits the data used to build it particularly
well, but will fail to generalize to a new set of data. Methods for exploring these issues are
covered in more advanced regression courses.

A general rule of thumb is to avoid fitting a model where there are fewer than 10
observations per parameter; e.g., to fit a model with 3 parameters, there should be at least
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Figure 7.32: Residual plots for the full model of abundance that includes
all predictors.

30 observations in the data. In a regression context, all of the following are considered
parameters: an intercept term, a slope term for a numerical predictor, a slope term for
each level of a categorical predictor, and an interaction term. In forest.birds, there are
56 cases, but fitting the full model involves estimating 10 parameters. The rule of thumb
suggests that for these data, a model can safely support at most 5 parameters.

As mentioned earlier, other analyses of forest.birds have treated grazing.intensity
as a numerical variable with five values. One advantage to doing so is to produce a more
stable model; only one slope parameter needs to be estimated, rather than four. How-
ever, treating grazing.intensity as a numerical variable requires assuming that any one
unit change is associated with the same change in population mean abundance; under this
assumption, a change between "light" and "less than average" (codes 1 to 2) is associated
with the same change in population mean abundance as between "moderately heavy" to
"heavy" (codes 4 to 5) grazing. Previous model fitting has shown that this assumption is
not supported by the data, and that changes in mean abundance between adjacent levels in
grazing intensity are not constant. In this text, it is our recommendation that categorical
variables should not be treated as numerical variables.
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7.9 The connection between ANOVA and regression

Regression with categorical variables and ANOVA are essentially the same method, but
with some important differences in the information provided by the analysis. Earlier in
this chapter, the strength of the association between RFFT scores and educational level
was assessed with regression. Table 7.33 shows the results of an ANOVA to analyze the
difference in RFFT scores between education groups.

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(Education) 3 115040.88 38346.96 73.30 0.0000
Residuals 496 259469.32 523.12

Table 7.33: Summary of ANOVA of RFFT by Education Levels

In this setting, the F-statistic is used to test the null hypothesis of no difference in
mean RFFT score by educational level against the alternative that at least two of the means
are different. The F-statistic is 73.3 and highly significant.

The F-statistic can also be calculated for regression models, although it has not been
shown in the regression model summaries in this chapter. In regression, the F-statistic
tests the null hypothesis that all regression coefficients are equal to 0 against the alterna-
tive that least one of the coefficients is not equal to 0.

Although the phrasing of the hypotheses in ANOVA versus regression may seem dif-
ferent initially, they are equivalent. Consider the regression model for predicting RFFT
from educational level—each of the coefficients in the model is an estimate of the dif-
ference in mean RFFT for a particular education level versus the baseline category of
Education = 0. A significant F-statistic indicates that at least one of the coefficients is
not zero; i.e., that at least one of the mean levels of RFFT differs from the baseline cat-
egory. If all the coefficients were to equal zero, then the differences between the means
would be zero, implying all the mean RFFT levels are equal. It is reasonable, then, that
the F-statistic associated with the RFFT versus Education regression model is also 73.3.

The assumptions behind the two approaches are identical. Both ANOVA and linear
regression assume that the groups are independent, that the observations within each
group are independent, that the response variable is approximately normally distributed,
and that the standard deviations of the response are the same across the groups.

The regression approach provides estimates of the mean at the baseline category (the
intercept) and the differences of the means between each category and the baseline, along
with a t-statistic and p-value for each comparison. From regression output, it is easy to
calculate all the estimated means; to do the same with ANOVA requires calculating sum-
mary statistics for each group. Additionally, diagnostic plots to check model assumptions
are generally easily accessible in most computing software.

Why use ANOVA at all if fitting a linear regression model seems to provide more
information? A case can be be made that the most important first step in analyzing the
association between a response and a categorical variable is to compute and examine the
F-statistic for evidence of any effect, and that only when the F-statistic is significant does
it become appropriate to proceed to examine the nature of the differences. ANOVA dis-
plays the F-statistic prominently, emphasizing its importance. It is available in regression
output, but may not always be easy to locate; the focus of regression is on the significance
of the individual coefficients. ANOVA has traditionally been used in carefully designed
experiments. There are complex versions of ANOVA that are appropriate for experiments
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in which several different factors are set at a range of levels. More complex versions of
ANOVA are beyond the scope of this text and are covered in more advanced books.

Section 5.5 discussed the use of Bonferroni corrections when testing hypotheses about
pairwise differences among the group means when conducting ANOVA. In principle, Bon-
ferroni corrections can be applied in regression with categorical variables, but that is not
often done. In designed experiments in which ANOVA has historically been used, the goal
was typically to show definitively that a categorical predictor, often a treatment or inter-
vention, was associated with a response variable so that the treatment could be adopted
for clinical use. In experiments where the predictor can be manipulated by a scientist
and cases are randomized to one of several levels of a predictor, the association can be
interpreted as causal. It can be particularly important to control Type I error probabilities
in those settings. Regression is often thought of as an exploratory technique, used in ob-
servational studies to discover associations that can be explored in further studies. Strict
control of Type I error probabilities may be less critical in such settings.

At the introductory level, ANOVA is useful in that it provides more direct access to
Type I error control and pairwise comparisons with t-tests. In practice, with the use of
techniques not covered in this text, any analysis done via the ANOVA approach can also
be approached with regression modeling.
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7.10 Notes

This chapter and the previous chapter cover only the basic principles behind linear re-
gression, and are meant to provide useful tools for getting started with data analysis. This
section summarizes the most important ideas in the chapter and makes reference to some
related topics that have not been discussed in detail.

Important ideas

Keep a clear view of the purpose. Is the goal of constructing the model to understand
the relationship between the response and a particular predictor after adjusting for
confounders? Or is the goal to understand the joint association between a response
and a set of predictors?

Avoid rushing into model fitting. Before fitting models, examine the data. Assess whether
the response variable has an approximate normal distribution, or at least a sym-
metric distribution; a log transformation will often produce approximate normality.
Examine the relationships between the response and predictors, as well as the rela-
tionships between predictors; check for nonlinear trends or outliers.

Remember the context of the problem. Context is important at each stage of a regression
analysis. The best approach for constructing a model from a small number of po-
tential predictors is based on considering the context of the problem and including
predictors that have either been shown in the past to be associated with the response
or for which there is a plausible working hypothesis about association with the re-
sponse. When interpreting coefficients, consider whether the model results cohere
with the underlying biological or medical context.

Critically examine residual plots. All models are approximations, so it is not necessary
to be concerned about relatively minor violations of assumptions; residual plots are
seldom as well behaved as those for the PREVEND data. In some cases, like with the
California DDS data, residual plots show obvious major violations. With intermedi-
ate cases such as in the forest.birds plots, examine the plots closely and provide a
detailed assessment of where the model seems less reliable.

Related topics

Stepwise model selection. Many introductory texts recommend using ’stepwise’ regres-
sion. Forward stepwise regression adds predictors one by one according to a set
criterion (usually by smallest p-value). Backward stepwise regression eliminates
variables one by one from a larger model until a criterion is met. Stepwise methods
can be useful, and are usually automated in statistical software. However, there are
weaknesses—the final models are data-dependent and chance alone can lead to spu-
rious variables being included. In very large datasets, stepwise regression can lead
to substantially incorrect models.

Prediction models. An application of regression not discussed in this chapter is predic-
tive modeling, in which the goal is to construct a model that best predicts outcomes.
The focus is on overall predictive accuracy; significance of individual coefficients is
less important. Evaluating a model’s predictive accuracy involves advanced meth-
ods such as cross-validation, in which the original data sample is divided into a
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training set and a test set, similar to the approach used with the Golub leukemia
data in Chapter 1. Prediction models are typically built from large datasets, using
automated model selection procedures like stepwise regression.

Prediction intervals. Predicted values from regression have an inherent uncertainty be-
cause model parameters are only estimates. There are two types of interval estimates
used with prediction: confidence intervals for a predicted mean response from a set
of values for the predictors, and prediction intervals that show the variability in the
predicted value for a new response (i.e., for a case not in the dataset) given a set of
values for the predictor variables. Prediction intervals are wider than confidence
intervals for a predicted mean because prediction intervals are subject to both the
variability in a predicted mean response and the variability of an individual obser-
vation about its mean.

Controlling Type I error in regression. Control of Type I error probabilities becomes more
critical in regression models with very large numbers of potential predictors. Datasets
containing measurements on genetic data often contain large numbers of potential
predictors for a response for many cases; a stricter significance level is used to main-
tain an overall error rate of α = 0.05. For example, in genome-wide association
studies, the accepted "genome-wide significance rate" for an individual marker to be
considered significantly associated with an outcome is 5× 10−8.

Because there are so many tools available in multiple regression, this chapter has a
larger collection of labs than most other chapters. Lab 1 introduces the multiple regres-
sion model, illustrating one its most common uses—estimating an association between
a response variable and predictor of interest while adjusting for possible confounding.
Lab 2 discusses the residual plots used to check assumptions for multiple regression and
introduces adjusted R2 using the California DDS dataset initially introduced in Chapter 1.

Lab 3 explores how the association between a response variable and categorical pre-
dictors with more than two levels can be be estimated using multiple regression. This
topic extends the earlier material in Chapter 6, Lab 4. Lab 4 introduces the concept of
a statistical interaction using the NHANES dataset, examining whether the association
between BMI and age among women is different than that among men.

Multiple regression is often used to examine associations between response variables
and a small set of pre-specified predictors. It can also be used to explore and select models
between a response variable and a set of candidate predictors. Lab 5 discusses explanatory
modeling, in which the goal is to construct a model that effectively explains the observed
variation in the response variable.



Chapter 8

Inference for categorical data

Previous chapters discussed methods of inference for numerical data; in this chapter,
those methods are extended to categorical data, such as binomial proportions or data in
two-way tables. While various details of the methods may change, such as the calculations
for a test statistic or the distributions used to find a p-value, the core ideas and principles
behind inference remain the same.

Categorical data arise frequently in medical research because disease outcomes and
patient characteristics are often recorded in natural categories such as types of treatment
received, whether or not disease advanced to a later stage, or whether or not a patient
responded initially to a treatment. In the simplest settings, a binary outcome (yes/no,
success/failure, etc) is recorded for a single group of participants, in hopes of learning
more about the population from which the participants were drawn. The binomial dis-
tribution is often used for the statistical model in this setting, and inference about the
binomial probability of success provides information about a population proportion p. In
more complex settings, participant characteristics are recorded in a categorical variable
with two or more levels, and the outcome or response variable itself has two or more lev-
els. In these instances, data are usually summarized in two-way tables with two or more
rows and two or more columns.

As with all methods of inference, it is important to understand how the data were
collected and whether the data may be viewed as a random sample from a well-identified
population, at least approximately. This issue is at least as important as the formulas for
test statistics and confidence intervals, and is often overlooked.

Be careful about the notation in this chapter—since p is the standard notation for
a population proportion and for a probability, p does double duty in this chapter as a
population parameter and significance level.

316
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8.1 Inference for a single proportion

Advanced melanoma is an aggressive form of skin cancer that until recently was almost
uniformly fatal. In rare instances, a patient’s melanoma stopped progressing or disap-
peared altogether when the patient’s immune system successfully mounted a response to
the cancer. Those observations led to research into therapies that might trigger an im-
mune response in cancer. Some of the most notable successes have been in melanoma,
particularly with two new therapies, nivolumab and ipilimumab1.

A 2013 report in the New England Journal of Medicine by Wolchok et al. reported the
results of a study in which patients were treated with both nivolumab and ipilimumab.2

Fifty-three patients were given the new regimens concurrently, and the response to ther-
apy could be evaluated in 52 of the 53. Of the 52 evaluable patients, 21 (40%) experienced
a response according to commonly accepted criteria. In previous studies, the proportion
of patients responding to one of these agents was 30% or less. How might one compare
the new data to past results?

The data are from this study are binomial data, with success defined as a response to
therapy. Suppose the number of patients who respond in a study like this is represented
by the random variable X, where X is binomial with parameters n (the number of trials,
where each trial is represented by a patient) and p (the unknown population proportion
of response). From formulas discussed in Chapter 3, the mean of X is np and the standard
deviation of X is

√
np(1− p).

Inference about p is based on the sample proportion p̂, where p̂ = X/n. In this case,
p̂ = 21/52 = 0.404. If the sample proportion is nearly normally distributed, the normal
approximation to the binomial distribution can be used to conduct inference; this method
is commonly used. When X does not have an approximately normal distribution, exact
inference can based on the binomial distribution for X. Both the normal approximation
and exact methods are covered in this chapter.

8.1.1 Inference using the normal approximation

A sample proportion can be described as a sample mean. If each success in the melanoma
data is represented as a 1 and each failure as a 0, then the sample proportion is the mean
of the 52 numerical outcomes:

p̂ =
0 + 1 + 1 + · · ·+ 0

52
= 0.404.

The distribution of p̂ is nearly normal when the distribution of successes and failures is
not too strongly skewed.

1The -mab suffix in these therapies stands for monoclonal antibody, a therapeutic agent made by identical
immune cells that are all clones of a unique parent cell from a patient.

2N Engl J Med 2013;369:122-33. DOI: 10.1056/NEJMoa1302369
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Conditions for the sampling distribution of p̂ being nearly normal

The sampling distribution for p̂, calculated from a sample of size n from a popu-
lation with a success proportion p, is nearly normal when

1. the sample observations are independent and

2. at least 10 successes and 10 failures are expected in the sample, i.e. np ≥ 10
and n(1− p) ≥ 10. This is called the success-failure condition.

If these conditions are met, then the sampling distribution of p̂ is approximately
normal with mean p and standard error

SEp̂ =

√
p(1− p)
n

. (8.1)

p̂
sample
proportion

p
population
proportion

When conducting inference, the population proportion p is unknown. Thus, to con-
struct a confidence interval, the sample proportion p̂ can be substituted for p to check
the success-failure condition and compute the standard error. In a hypothesis test, p0 is
substituted for p.

Confidence intervals for a proportion

When using the normal approximation to the sampling distribution of p̂, a confidence
interval for a proportion has the same structure as a confidence interval for a mean; it is
centered at the point estimate, with a margin of error calculated from the standard error
and appropriate z? value. The formula for a 95% confidence interval is

p̂ ± 1.96

√
p̂(1− p̂)
n

.

 Example 8.2 Using the normal approximation, construct an approximate 95% con-
fidence interval for the response probability for patients with advanced melanoma
who were administered the combination of nivolumab and ipilimumab.

The independence and success-failure assumptions should be checked first. Since
the outcome of one patient is unlikely to influence that of other patients, the ob-
servations are independent. The success-failure condition is satisfied since np̂ =
(52)(.404) = 21 > 10 and np̂(1− p̂) = (52)(.596) = 31 > 10.

The point estimate for the response probability, based on a sample of size n = 52, is
p̂ = 0.404. For a 95% confidence interval, z? = 1.96. The standard error is estimated

as:
√

p̂(1−p̂)
n =

√
(0.404)(1−0.404)

52 = 0.068. The confidence interval is

0.404± 1.96(0.068)→ (0.27,0.54)

The approximate 95% confidence interval for p, the population response probability
of melanoma patients to the combination of these new drugs, is (0.27, 0.54) or (27%,
54%).
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⊙
Guided Practice 8.3 In New York City on October 23rd, 2014, a doctor who had
recently been treating Ebola patients in Guinea went to the hospital with a slight
fever and was subsequently diagnosed with Ebola. Soon after, a survey conducted
by the Marist Poll, an organization with a carefully designed methodology for draw-
ing random samples from identified populations, found that 82% of New Yorkers
favored a "mandatory 21-day quarantine for anyone who has come in contact with
an Ebola patient."3 a) Verify that the sampling distribution of p̂ is nearly normal.
b) Construct a 95% confidence interval for p, the proportion of New York adults
who supported a quarantine for anyone who has come into contact with an Ebola
patient.4

Did the participants in the melanoma trial constitute a random sample? Patients
who participate in clinical trials are unlikely to be a random sample of patients with the
disease under study since the patients or their physicians must be aware of the trial, and
patients must be well enough to travel to a major medical center and be willing to receive
an experimental therapy that may have serious side effects.

Investigators in the melanoma trial were aware that the the observed proportion of
patients responding in a clinical trial may be different than the hypothetical response
probability in the population of patients with advanced melanoma. Study teams try
to minimize these systematic differences by following strict specifications for deciding
whether patients are eligible for a study. However, there is no guarantee that the results
observed in a sample will be replicated in the general population.

Small, initial studies in which there is no control group, like the one described here,
are early steps in exploring the value of a new therapy and are used to justify further study
of a treatment when the results are substantially different than expected. The largest ob-
served response rate in previous trials of 30% was close to the lower bound of the confi-
dence interval from the study (27%, 54%), so the results were considered adequate justi-
fication for continued research on this treatment.

Hypothesis testing for a proportion

Just as with inference for population means, confidence intervals for population propor-
tions can be used when deciding whether to reject a null hypothesis. It is useful in most
settings, however, to calculate the p-value for a test as a measure of the strength of the
evidence contradicting the null hypothesis.

When using the normal approximation for the distribution of p̂ to conduct a hy-
pothesis test, one should always verify that p̂ is nearly normal under H0 by checking the
independence and success-failure conditions. Since a hypothesis test is based on the dis-
tribution of the test statistic under the null hypothesis, the success-failure condition is
checked using the null proportion p0, not the estimate p̂.

According to the normal approximation to the binomial distribution, the number
of successes in n trials is normally distributed with mean np0 and standard deviation√
np(1− p0). This approximation is valid when np0 and n(1− p0) are both at least 10.5

3Poll ID NY141026 on maristpoll.marist.edu.
4a) The poll is based on a simple random sample and consists of fewer than 10% of the adult population of

New York, which makes independence a reasonable assumption. The success-failure condition is satisfied since,

1042(0.82) > 5 and 1042(1− 0.82) > 5. b) 0.82± 1.96
√

0.82(1−0.82)
1042 → (0.796,0.844).

5The normal approximation to the binomial distribution was discussed in Section 3.2 of Chapter 3.

http://www.openintro.org/redirect.php?go=textbook-maristpoll_ebola_201410&referrer=os3_pdf
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Under the null hypothesis, the sample proportion p̂ = X/n is approximately dis-
tributed as

N

p0,

√
p0(1− p0)

n

 .
The test statistic z for the null hypothesis H0 : p = p0 based on a sample of size n is

z =
point estimate - null value

SE

=
p̂ − p0√
(p0)(1−p0)

n

.

 Example 8.4 Suppose that out of a cohort of 120 patients with stage 1 lung cancer
at the Dana-Farber Cancer Institute (DFCI), 80 of the patients survive at least 5
years, and suppose that National Cancer Institute statistics indicate that the 5-year
survival probability for stage 1 lung cancer patients nationally is 0.60. Do the data
collected from 120 patients support the claim that the DFCI population with this
disease has a different 5-year survival probability than the national population? Let
α = 0.10, since this is an early study of the therapy.

Test the hypothesisH0 : p = 0.60 versus the alternative,HA : p , 0.60, using α = 0.10.
If we assume that the outcome of one patient at DFCI does not influence the out-
come of other patients, the independence condition is met, and the success-failure
condition is satisfied since (120)(0.60) = 80 > 5 and (120)(1− 0.60) = 40 > 5. The test
statistic is the z-score of the point estimate:

z =
point estimate - null value

SE
=

0.67− 0.60√
(0.60)(1−0.60)

120

= 1.57.

The p-value is the probability that a standard normal variable is larger than 1.57 or
smaller than -1.57, P (|Z | > 1.57) = 0.12 ; since the p-value is greater than 0.05, there
is insufficient evidence to reject H0 in favor of HA. There is not convincing evidence
that the survival probability at DFCI differs from the national rate.

 Example 8.5 Using the data from the study in advanced melanoma, use the nor-
mal approximation to the sampling distribution of p̂ to test the null hypothesis that
the response probability to the novel combined therapy is 30% against a one-sided
alternative that the response proportion is greater than 30%. Let α = 0.10.

The test statistic has value

z = (0.404− 0.30)/
√

(0.30)(0.70)/52 = 1.64.

The one-sided p-value is P (Z ≥ 1.64) = 0.05; there is sufficient evidence to reject
the null hypothesis at α = 0.10. This is an example of where a two-sided test and a
one-sided test yield different conclusions.⊙
Guided Practice 8.6 One of the questions on the National Health and Nutrition
Examination Survey (introduced in Chapter 5) asked participants whether they par-
ticipated in moderate or vigorous intensity sports, fitness, or recreational activities.
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In a random sample of 135 adults, 76 answered "Yes" to the question. Based on this
evidence, are a majority of American adults physically active?6

8.1.2 Inference using exact methods

When the normal approximation to the distribution of p̂ may not be accurate, inference
is based on exact binomial probabilities. Calculating confidence intervals and p-values
based on the binomial distribution can be done by hand, with tables of the binomial distri-
bution, or (more easily and accurately) with statistical software. The logic behind comput-
ing a p-value is discussed here, but the formulas for a confidence interval are complicated
and are not shown.

The p-value for a hypothesis test corresponds to the sum of the probabilities of all
events that are as or more extreme than the sample result. Let X be a binomial random
variable with parameters n and p0, where p̂ = x/n and x is the observed number of events.
If p̂ ≤ p0, then the one-tail probability equals P (X ≤ x); if p̂ > p0, then the one-tail prob-
ability equals P (X ≥ x). These probabilities are calculated using the approaches from
Chapter 3.

 Example 8.7 In 2009, the FDA Oncology Drug Advisory Committee (ODAC) rec-
ommended that the drug Avastin be approved for use in glioblastoma, a form of
brain cancer. Tumor shrinkage after taking a drug is called a response; out of 85 pa-
tients, 24 exhibited a response. Historically, response probabilities for brain cancer
drugs were approximately 0.05, or about 5%. Assess whether there is evidence that
the response probability for Avastin is different from previous drugs.

H0 : p = 0.05; HA : p , 0.05. Let α = 0.05.

The independence condition is satisfied, but the success-failure condition is not,
since np0 = (85)(0.05) = 4.25 < 5, so this is a setting where exact binomial probabili-
ties should be used to calculate a p-value.

The sample proportion p̂ equals x/n = 24/85 = 0.28. Since p̂ > p0, calculate the
two-sided p-value from 2× P (X ≥ 24), where X ∼ Binom(85,0.05).

Calculating the p-value is best done in software; the R command pbinom returns a
value of 5.3486× 10−12.7

The p-value is highly significant and suggests that the response probability for Avastin
is higher than for previous brain cancer drugs. The FDA staff considered this evi-
dence sufficiently strong enough to justify approval for the use of the drug, even
though the FDA normally requires evidence from two independently conducted ran-
domized trials.⊙
Guided Practice 8.8 Medical consultants assist patients with all aspects of an or-
gan donation surgery, with the goal of reducing the possibility of complications dur-
ing the medical procedure and recovery. To attract customers, one consultant noted
that while the usual proportion of complications in liver donation surgeries in the

6The observations are independent. Check success-failure: np0 = n(1 − p0) = 135(0.5) > 10. H0 : p = 0.5;
HA : p > 0.5. Calculate the z-score: z = 0.56−0.50√

0.5(1−0.5)
135

= 1.39. The p-value is 0.08. Since the p-value is larger than

0.05, there is insufficient evidence to reject H0; there is not convincing evidence that a majority of Americans
are physically active, although the data suggest that may be the case.

72*pbinom(q = 23, size = 85, p = 0.05, lower.tail = FALSE)
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United States is about 10%, she has only had 3 out of 62 clients experience compli-
cations with liver donor surgeries. Is there evidence to suggest that the proportion
of complications in her patients is lower than the national average?8

8.1.3 Choosing a sample size when estimating a proportion

Whenever possible, a sample size for a study should be estimated before data collection
begins. Section 5.4 explored the calculation of sample sizes that allow a hypothesis test
comparing two groups to have adequate power. When estimating a proportion, prelim-
inary sample size calculations are often done to estimate a sample size large enough to
make the margin of error m in a confidence interval sufficiently small for the interval to
be useful. Recall that the margin of error m is the term that is added and subtracted from
the point estimate. Statistically, this means estimating a sample size n so that the sam-
ple proportion is within some margin of error m of the actual proportion with a certain
level of confidence. When the normal approximation is used for a binomial proportion, a
sample size sufficiently large to have a margin of error of m will satisfy

m = (z?)(s.e.(p̂)) = z?
√

(p)(1− p)
n

.

Algebra can be used to show that the above equation implies

n =
(z?)2(p)(1− p)

m2 .

In some settings a preliminary estimate for p can be used to calculate n. When no estimate
is available, calculus can be used to show that p(1 − p) has its largest value when p =
0.50, and that conservative value for p is often used to ensure that n is sufficiently large
regardless of the value of the unknown population proportion p. In that case, n satisfies

n ≥ (z?)2(0.50)(1− 0.50)
m2 =

(z?)2

4m2 .

 Example 8.9 Donor organs for organ transplant are scarce. Studies are conducted
to explore whether the population of eligible organs can be expanded. Suppose a
research team is studying the possibility of transplanting lungs from hepatitis C
positive individuals; recipients can be treated with one of the new drugs that cures
hepatitis C. Preliminary studies in organ transplant are often designed to estimate
the probability of a successful organ graft 6 months after the transplant. How large
should a study be so that the 95% confidence interval for the probability of a suc-
cessful graft at 6 months is no wider than 20%?

A confidence interval no wider than 20% has a margin of error of 10%, or 0.10.
Using the conservative value p = 0.50,

n =
(1.96)2

(4)(0.102)
= 96.04.

8Assume that the 62 patients in her dataset may be viewed as a random sample from her patient population.
The sample proportion p̂ = 3/62 = 0.048. Under the null hypothesis, the expected number of complications is
62(0.10) = 6.2, so the normal approximation may not be accurate and it is best to use exact binomial probabilities.
Since p̂ ≤ p0, find the p-value by calculating P (X ≤ 3) when X has a binomial distribution with parameters n =
62, p = 0.10: P (X ≤ 3) = 0.121. There is not sufficient evidence to suggest that the proportion of complications
among her patients is lower than the national average.
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Sample sizes are always rounded up, so the study should have 97 patients.

Since the study will likely yield a value p̂ different from 0.50, the final margin of
error will be smaller than ±0.10.

When the confidence coefficient is 95%, 1.96 can replaced by 2 and the sample size
formula reduces to

n = 1/m2.

This remarkably simple formula is often used by practitioners for a quick estimate of
sample size.⊙

Guided Practice 8.10 A recent estimate of Congress’ approval rating was 19%.9

What sample size does this estimate suggest should be used for a margin of error of
0.04 with 95% confidence?10

9www.gallup.com/poll/183128/five-months-gop-congress-approval-remains-low.aspx
10Apply the formula

1.96×
√
p(1− p)
n

≈ 1.96×
√

0.19(1− 0.19)
n

≤ 0.04 → n ≥ 369.5

A sample size of 370 or more would be reasonable.

http://www.openintro.org/redirect.php?go=textbook-congress_at_19_in_May2015&referrer=os3_pdf
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8.2 Inference for the difference of two proportions

Just as inference can be done for the difference of two population means, conclusions can
also be drawn about the difference of two population proportions: p1 − p2.

8.2.1 Sampling distribution of the difference of two proportions

The normal model can be applied to p̂1 − p̂2 if the sampling distribution for each sample
proportion is nearly normal and if the samples are independent random samples from the
relevant populations.

Conditions for the sampling distribution of p̂1−p̂2 to be approximately normal

The difference p̂1 − p̂2 tends to follow a normal model when

– each of the two samples are random samples from a population,

– the two samples are independent of each other, and

– each sample proportion follows (approximately) a normal model. This con-
dition is satisfied when n1p1,n1(1− p1),n2p2 and n2(1− p2) are all ≥ 10.

The standard error of the difference in sample proportions is

SEp̂1−p̂2
=

√
SE2

p̂1
+ SE2

p̂2
=

√
p1(1− p1)

n1
+
p2(1− p2)

n2
, (8.11)

where p1 and p2 are the population proportions, and n1 and n2 are the two sample
sizes.

8.2.2 Confidence intervals for p1 − p2

When calculating confidence intervals for a difference of two proportions using the nor-
mal approximation to the binomial, the two sample proportions are used to verify the
success-failure condition and to compute the standard error.

 Example 8.12 The way a question is phrased can influence a person’s response. For
example, Pew Research Center conducted a survey with the following question:11

As you may know, by 2014 nearly all Americans will be required to have
health insurance. [People who do not buy insurance will pay a penalty]
while [People who cannot afford it will receive financial help from the
government]. Do you approve or disapprove of this policy?

For each randomly sampled respondent, the statements in brackets were random-
ized: either they were kept in the order given above, or the order of the two state-
ments was reversed. Table 8.1 shows the results of this experiment. Calculate and
interpret a 90% confidence interval of the difference in the probability of approval
of the policy.

11www.people-press.org/2012/03/26/public-remains-split-on-health-care-bill-opposed-to-mandate. Sam-
ple sizes for each polling group are approximate.

http://www.openintro.org/redirect.php?go=textbook-health_care_bill_2012&referrer=os3_pdf
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Sample size (ni) Approve (%) Disapprove (%) Other
Original ordering 771 47 49 3
Reversed ordering 732 34 63 3

Table 8.1: Results for a Pew Research Center poll where the ordering of
two statements in a question regarding healthcare were randomized.

First the conditions for the use of a normal model must be verified. The Pew Re-
search Center uses sampling methods that produce random samples of the US popu-
lation (at least approximately) and because each group was a simple random sample
from less than 10% of the population, the observations are independent, both within
the samples and between the samples. The success-failure condition also holds for
each sample, so the normal model can be used for confidence intervals for the differ-
ence in approval proportions. The point estimate of the difference in support, where
p̂1 corresponds to the original ordering and p̂2 to the reversed ordering:

p̂1 − p̂2 = 0.47− 0.34 = 0.13.

The standard error can be computed from Equation (8.11) using the sample propor-
tions:

SE ≈
√

0.47(1− 0.47)
771

+
0.34(1− 0.34)

732
= 0.025.

For a 90% confidence interval, z? = 1.65:

point estimate ± z? × SE → 0.13 ± 1.65× 0.025 → (0.09,0.17)

With 90% confidence, the proportion approving the 2010 health care law ranged
between 9% and 17% depending on the phrasing of the question. The Pew Research
Center interpreted this modestly large difference as an indication that for most of
the public, opinions were still fluid on the health insurance mandate. The law even-
tually passed as the Affordable Health Care Act (ACA).

8.2.3 Hypothesis testing for p1 − p2

Hypothesis tests for p1−p2 are usually testing the null hypothesis of no difference between
p1 and p2; i.e. H0 : p1 − p2 = 0. Under the null hypothesis, p̂1 − p̂2 is normally distributed

with mean 0 and standard deviation
√
p(1− p)( 1

n1
+ 1
n2

), where under the null hypothesis
p = p1 = p2.

Since p is unknown, an estimate is used to compute the standard error of p̂1 − p̂2; p
can be estimated by p̂, the weighted average of the sample proportions p̂1 and p̂2:

p̂ =
n1p̂1 +n2p̂2

n1 +n2
=
x1 + x2

n1 +n2
,

where x1 is the number of observed events in the first sample and x2 is the number of
observed events in the second sample. This pooled proportion p̂ is also used to check the
success-failure condition.

The test statistic z for testing H0 : p1 = p2 versus HA : p1 , p2 equals:
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z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

) .
 Example 8.13 The use of screening mammograms for breast cancer has been con-

troversial for decades because the overall benefit on breast cancer mortality is un-
certain. Several large randomized studies have been conducted in an attempt to
estimate the effect of mammogram screening. A 30-year study to investigate the
effectiveness of mammograms versus a standard non-mammogram breast cancer
exam was conducted in Canada with 89,835 female participants.12 During a 5-year
screening period, each woman was randomized to either receive annual mammo-
grams or standard physical exams for breast cancer. During the 25 years following
the screening period, each woman was screened for breast cancer according to the
standard of care at her health care center.

At the end of the 25 year follow-up period, 1,005 women died from breast cancer.
The results by intervention are summarized in Table 8.2.

Death from breast cancer?
Yes No

Mammogram 500 44,425
Control 505 44,405

Table 8.2: Summary results for the mammogram study.

Assess whether the normal model can be used to analyze the study results.

Since the participants were randomly assigned to each group, the groups can be
treated as independent, and it is reasonable to assume independence of patients
within each group. Participants in randomized studies are rarely random samples
from a population, but the investigators in the Canadian trial recruited participants
using a general publicity campaign, by sending personal invitation letters to women
identified from general population lists, and through contacting family doctors. In
this study, the participants can reasonably be thought of as a random sample.

The pooled proportion p̂ is

p̂ =
x1 + x2

n1 +n2
=

500 + 505
500 + 44,425 + 505 + 44,405

= 0.0112.

Checking the success-failure condition for each group:

p̂ ×nmgm = 0.0112× 44,925 = 503 (1− p̂)×nmgm = 0.9888× 44,925 = 44,422

p̂ ×nctrl = 0.0112× 44,910 = 503 (1− p̂)×nctrl = 0.9888× 44,910 = 44,407

All values are at least 10.

The normal model can be used to analyze the study results.
12Miller AB. 2014. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National

Breast Screening Study: randomised screening trial. BMJ 2014;348:g366 doi: 10.1136/bmj.g366

http://www.openintro.org/redirect.php?go=textbook-90k_mammogram_study_2014&referrer=os3_pdf
http://www.openintro.org/redirect.php?go=textbook-90k_mammogram_study_2014&referrer=os3_pdf
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 Example 8.14 Do the results from the study provide convincing evidence of a
difference in the proportion of breast cancer deaths between women who had an-
nual mammograms during the screening period versus women who received annual
screening with physical exams?

The null hypothesis is that the probability of a breast cancer death is the same for
the women in the two groups. If group 1 represents the mammogram group and
group 2 the control group, H0 : p1 = p2 and HA : p1 , p2. Let α = 0.05.

Calculate the test statistic z:

z =
0.01113− 0.01125√

(0.0112)(1− 0.0112)
(

1
44,925 + 1

44,910

) = −0.17.

The two-sided p-value is P |Z | ≥ 0.17 = 0.8650, which is greater than 0.05. There is
insufficient evidence to reject the null hypothesis; the observed difference in breast
cancer death rates is reasonably explained by chance.

Evaluating medical treatments typically requires accounting for additional evidence
that cannot be evaluated from a statistical test. For example, if mammograms are
much more expensive than a standard screening and do not offer clear benefits,
there is reason to recommend standard screenings over mammograms. This study
also found that a higher proportion of diagnosed breast cancer cases in the mam-
mogram screening arm (3250 in the mammogram group vs 3133 in the physical
exam group), despite the nearly equal number of breast cancer deaths. The inves-
tigators inferred that mammograms may cause over-diagnosis of breast cancer, a
phenomenon in which a breast cancer diagnosed with mammogram and subsequent
biopsy may never become symptomatic. The possibility of over-diagnosis is one of
the reasons mammogram screening remains controversial.

 Example 8.15 Calculate a 95% confidence interval for the difference in proportions
of deaths from breast cancer from the Canadian study.

The independence and random sampling conditions have already been discussed.
The success failure condition should be checked for each sample, since this is not a
hypothesis testing context (i.e., there is no null hypothesis). For the mammogram
group, p̂1 = 0.01113; n1p̂1 = (0.1113)(44,925) = 500 and n1(1 − p̂1) = 39,925. It is
easy to show that the success failure condition is holds for the control group as well.

The point estimate for the difference in the probability of death is

p̂1 − p̂2 = 0.01113− 0.01125 = −0.00012,

or 0.012%.

The standard error for the estimated difference uses the individual estimates of the
probability of a death:

SE ≈
√

0.01113(1− 0.01113)
44,925

+
0.01125(1− 0.01125)

44,910
= 0.0007

The 95% confidence interval is given by

−0.00012± (1.96)(0.0007) = (−0.0015,0.0013).
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With 95% confidence, the difference in the probability of death is between -0.15%
and 0.13%. As expected from the large p-value, the confidence interval contains the
null value 0.
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8.3 Inference for two or more groups

The comparison of the proportion of breast cancer deaths between the two groups can
also be approached using a two-way contingency table, which contains counts for com-
binations of outcomes for two variables. The results for the mammogram study in this
format are shown in Table 8.3.

Previously, the main question of interest was stated as, "Is there evidence of a differ-
ence in the proportion of breast cancer deaths between the two screening groups?" If the
probability of a death from breast cancer does not depend the method of screening, then
screening method and outcome are independent. Thus, the question can be re-phrased:
"Is there evidence that screening method is associated with outcome?"

Hypothesis testing in a two-way table assesses whether the two variables of interest
are associated (i.e., not independent). The approach can be applied to settings with two
or more groups and for responses that have two or more categories. The observed number
of counts in each table cell are compared to the number of expected counts, where the
expected counts are calculated under the assumption that the null hypothesis of no asso-
ciation is true. A χ2 test of significance is based on the differences between observed and
expected values in the cells.

Death from BC Yes No Total
Mammogram 500 44,425 44,925
Control 505 44,405 44,910
Total 1,005 88,830 89,835

Table 8.3: Results of the mammogram study, as a contingency table with
marginal totals.

⊙
Guided Practice 8.16 Formulate hypotheses for a contingency-table approach to
analyzing the mammogram data.13

8.3.1 Expected counts

If type of breast cancer screening had no effect on outcome in the mammogram data, what
would the expected results be?

Recall that if two events A and B are independent, then P (A ∩ B) = P (A)P (B). Let
A represent assignment to the mammogram group and B the event of death from breast
cancer. Under independence, the number of individuals out of 89,835 that are expected
to be in the mammogram screening group and die from breast cancer equals:

(89,835)P (A)P (B) = (89,835)
(44,925

89,835

)( 1,005
89,835

)
= 502.6.

Note that the quantities 44,925 and 1,005 are the row and column totals correspond-
ing to the upper left cell of Table 8.3, and 89,835 is the total number n of observations in
the table. A general formula for computing expected counts for any cell can be written
from the marginal totals and the total number of observations.

13H0: There is no association between type of breast cancer screening and death from breast cancer. HA:
There is an association between type of breast cancer screening and death from breast cancer.
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Computing expected counts in a two-way table

To calculate the expected count for the ith row and jth column, compute

Expected Countrow i, col j =
(row i total)× (column j total)

table total
.

 Example 8.17 Calculate expected counts for the data in Table 8.3.

E1,1 =
44,925× 1,005

89,835
= 502.6 E1,2 =

44,925× 88,830
89,835

= 44,422.4

E2,1 =
2,922× 1,005

89,835
= 502.4 E2,2 =

7,078× 88,830
89,835

= 44,407.6

Death from BC Yes No Total
Mammogram 500 (502.6) 44,425 (44,422.4) 44,925
Control 505 (502.4) 44,405 (44,407.6) 44,910
Total 1,005 88,830 89,835

Table 8.4: Results of the mammogram study, with (expected counts). The
expected counts should also sum to the row and column totals; this can be
a useful check for accuracy.

 Example 8.18 If a newborn is HIV+, should he or she be treated with nevirapine
(NVP) or a more expensive drug, lopinarvir (LPV)? In this setting, success means
preventing virologic failure; i.e., growth of the virus. A randomized study was con-
ducted to assess whether there is an association between treatment and outcome.14

Of the 147 children administered NVP, about 41% experienced virologic failure; of
the 140 children administered LPV, about 19% experienced virologic failure. Con-
struct a table of observed counts and a table of expected counts.

Convert the proportions to count data: 41% of 147 is approximately 60, and 19% of
140 is approximately 27.

NVP LPV Total
Virologic Failure 60 27 87
Stable Disease 87 113 200
Total 147 140 287

Table 8.5: Observed counts for the HIV study

Calculate the expected counts for each cell:

E1,1 =
87× 147

287
= 44.6 E1,2 =

87× 140
287

= 42.4

14N Engl J Med 2012; 366:2380-2389 DOI: 10.1056/NEJMoa1113249
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E2,1 =
200× 147

287
= 102.4 E2,2 =

200× 140
287

= 97.6

NVP LPV Total
Virologic Failure 44.6 42.4 87
Stable Disease 102.4 97.6 200
Total 147 140 287

Table 8.6: Expected counts for the HIV study

8.3.2 The χ2 test statistic

Previously, test statistics have been constructed by calculating the difference between a
point estimate and a null value, then dividing by the standard error of the point estimate
to standardize the difference. The χ2 statistic is based on a different idea. In each cell of a
table, the difference observed - expected is a measure of the discrepancy between what was
observed in the data and what should have been observed under the null hypothesis of no
association. If the row and column variables are highly associated, that difference will be
large. Two adjustments are made to the differences before the final statistic is calculated.
First, since both positive and negative differences suggest a lack of independence, the
differences are squared to remove the effect of the sign. Second, cells with larger counts
may have larger discrepancies by chance alone, so the squared differences in each cell are
scaled by the number expected in the cell under the hypothesis of independence. The
final χ2 statistic is the sum of these standardized squared differences, where the sum has
one term for each cell in the table.

The χ2 test statistic is calculated as:

χ2

chi-square
test statistic

χ2 =
∑

all cells

(observed− expected)2

expected
.

The theory behind the χ2 test and its sampling distribution relies on the same normal
approximation to the binomial distribution that was introduced earlier. The cases in the
dataset must be independent and each expected cell count should be at least 10. The
second condition can be relaxed in tables with more than 4 cells.

Conditions for the χ2 test

Two conditions that must be checked before performing a χ2 test:

Independence. Each case that contributes a count to the table must be indepen-
dent of all the other cases in the table.

Sample size. Each expected cell count must be greater than or equal to 10. For
tables larger than 2× 2, it is appropriate to use the test if no more than 1/5
of the expected counts are less than 5, and all expected counts are greater
than 1.

 Example 8.19 For the mammogram data, check the conditions for the χ2 test and
calculate the χ2 test statistic.
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Independence is a reasonable assumption, since individuals have been randomized
to either the treatment or control group. Each expected cell count is greater than 10.

χ2 =
∑

all cells

(observed− expected)2

expected

=
(500− 502.6)2

502.6
+

(44,425− 44,422.4)2

44,422.4
+

(505− 502.4)2

502.4
+

(44,405− 44,407.6)2

44,407.6
= 0.02⊙

Guided Practice 8.20 For the HIV data, check the conditions for the χ2 test and
calculate the χ2 test statistic.15

8.3.3 Calculating p-values for a χ2 distribution

The chi-square distribution is often used with data and statistics that are positive and
right-skewed. The distribution is characterized by a single parameter, the degrees of free-
dom. Figure 8.7 demonstrates three general properties of chi-square distributions as the
degrees of freedom increases: the distribution becomes more symmetric, the center moves
to the right, and the variability increases.

0 5 10 15 20 25

Degrees of Freedom

2
4
9

Figure 8.7: Three chi-square distributions with varying degrees of free-
dom.

The χ2 statistic from a contingency table has a sampling distribution that approxi-
mately follows a χ2 distribution with degrees of freedom df = (r −1)(c−1), where r is the
number of rows and c is the number of columns. Either statistical software or a table can
be used to calculate p-values from the χ2 distribution. The chi-square table is partially
shown in Table 8.8, and a more complete table is presented in Appendix A.3 on page 352.
This table is very similar to the t-table: each row provides values for distributions with
different degrees of freedom, and a cut-off value is provided for specified tail areas. One
important difference from the t-table is that the χ2 table only provides upper tail values.

15Independence holds, since this is a randomized study. The expected counts are greater than 10. χ2 =
(60−44.6)2

44.6 + (27−42.4)2
42.4 + (87−102.4)2

102.4 + (113−97.6)2
97.6 = 14.7.
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Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83

2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

Table 8.8: A section of the chi-square table. A complete table is in Ap-
pendix A.3 on page 352.

 Example 8.21 Calculate an approximate p-value for the mammogram data, given
that the χ2 statistic equals 0.02. Assess whether the data provides convincing evi-
dence of an association between screening group and breast cancer death.

The degrees of freedom in a 2×2 table is 1, so refer to the values in the first column
of the probability table. The value 0.02 is less than 1.07, so the p-value is greater
than 0.3. The data do not provide convincing evidence of an association between
screening group and breast cancer death. This supports the conclusions from Exam-
ple 8.14, where the p-value was calculated to be 0.8650.

0 1 2 3 4 5

Figure 8.9: The p-value for the mammogram data is shaded on the χ2

distribution with df = 1.The shaded area is to the right of x = 0.02.

⊙
Guided Practice 8.22 Calculate an approximate p-value for the HIV data. Assess
whether the data provides convincing evidence of an association between treatment
and outcome at the α = 0.01 significance level.16

8.3.4 Interpreting the results of a χ2 test

If the p-value from a χ2 test is small enough to provide evidence to reject the null hypoth-
esis of no association, it is important to explore the results further to understand direction
of the observed association. This is done by examining the residuals, the standardized dif-
ferences of the observed - expected, for each cell. Instead of using squared differences, the
residuals are based on the differences themselves, and the standardizing or scaling fac-
tor is

√
expected. Calculating residuals can be particularly helpful for understanding the

results from large tables.

16The χ2 statistic is 14.7. For degrees of freedom 1, the tail area beyond 14.7 is smaller than 0.001. There is
evidence to suggest that treatment is not independent of outcome.
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For each cell in a table, the residual equals:

observed− expected√
expected

Residuals with a large magnitude contribute the most to the χ2 statistic. If a residual
is positive, the observed value is greater than the expected value, and vice versa for a
negative residual.

 Example 8.23 In the FAMuSS study introduced in Chapter 1, researchers measured
a variety of demographic and genetic characteristics for about 1,300 participants,
including data on race and genotype at a specific locus on the ACTN3 gene. Is there
evidence of an association between genotype and race?

CC CT TT Sum
African American 16 6 5 27

Asian 21 18 16 55
Caucasian 125 216 126 467

Hispanic 4 10 9 23
Other 7 11 5 23

Sum 173 261 161 595

Table 8.10: Observed counts for race and genotype data from the FAMuSS
study.

First, check the assumptions for applying a χ2 test. It is reasonable to assume inde-
pendence, since it is unlikely that any participants were related to each other. None
of the expected counts, as shown in Table 8.11, are less than 5.

CC CT TT Sum
African Am 7.85 11.84 7.31 27.00

Asian 15.99 24.13 14.88 55.00
Caucasian 135.78 204.85 126.36 467.00

Hispanic 6.69 10.09 6.22 23.00
Other 6.69 10.09 6.22 23.00

Sum 173.00 261.00 161.00 595.00

Table 8.11: Expected counts for race and genotype data from the FAMuSS
study.

H0: Race and genotype are independent.

HA: Race and genotype are not independent.

Let α = 0.05.

Calculate the χ2 statistic:

χ2 =
∑

all cells

(observed− expected)2

expected

=
(16− 7.85)2

7.85
+

(6− 11.84)2

11.84
+ ...+

(5− 6.22)2

6.22
= 19.4
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Calculate the p-value: for a table with 3 rows and 5 columns, the χ2 statistic is
distributed with (3 − 1)(5 − 1) = 8 degrees of freedom. From the table, a χ2 value
of 19.4 corresponds to a tail area between 0.01 and 0.02. Thus, there is sufficient
evidence to reject the null hypothesis of independence between race and genotype.

The exact p-value can be obtained using the R function pchisq, which returns a value
of 0.012861.17

To further explore the differences in genotype distribution between races, calculate
residuals for each cell. The largest residuals are in the first row; there are many more
African Americans with the CC genotype than expected under independence, and
fewer with the CT genotype than expected. The residuals in the second row indicate
a similar trend for Asians, but with a less pronounced difference. These results
suggest further directions for research; a future study could enroll a larger number
of African American and Asian participants to examine whether the observed trend
holds with a more representative sample. Geneticists might also be interested in
exploring whether this genetic difference between populations has an observable
phenotypic effect.

CC CT TT Sum
African Am 2.91 -1.70 -0.85 0.00

Asian 1.25 -1.25 0.29 0.00
Caucasian -0.93 0.78 -0.03 0.00

Hispanic -1.04 -0.03 1.11 0.00
Other 0.12 0.29 -0.49 0.00

Sum 0.00 0.00 0.00 0.00

Table 8.12: Residuals for race and genotype data from the FAMuSS study

 Example 8.24 In Guided Practice 8.22, the p-value was found to be smaller than
0.001, suggesting that treatment is not independent of outcome. Does the evidence
suggest that infants should be given nevirapine or lopinarvir?

NVP LPV Total
Virologic Failure 60 44.6 27 42.4 87
Stable Disease 87 102.4 113 97.6 200
Total 147 140 287

Table 8.13: Observed and (expected) counts for the HIV study.

In a 2×2 table, it is relatively easy to directly compare observed and expected counts.
For nevirapine, more infants than expected experienced virologic failure (60 > 44.6),
while fewer than expected reached a stable disease state (87 < 102.4). For lopinarvir,
fewer infants than expected experienced virologic failure (27 < 42.4), and more in-
fants than expected reached a stable disease state (113 > 97.6). The outcomes for
infants on lopinarvir are better than for those on nevirapine; combined with the re-
sults of the significance test, the data suggest that lopinarvir is associated with better
treatment outcomes.

17 pchisq(19.4, df = 8, lower.tail = FALSE)
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⊙
Guided Practice 8.25 Confirm the conclusions reached in Example 8.24 by ana-
lyzing the residuals.18

⊙
Guided Practice 8.26 Chapter 1 started with the discussion of a study examining
whether exposure to peanut products reduce the rate of a child developing peanut
allergies. Children were randomized either to the peanut avoidance or the peanut
consumption group; at 5 years of age, each child was tested for peanut allergy using
an oral food challenge (OFC). The results of the OFC are reproduced in Table 8.14;
failing the food challenge indicates an allergic reaction. Assess whether there is
evidence for exposure to peanut allergy reducing the chance of developing peanut
allergies.19

FAIL OFC PASS OFC Sum
Peanut Avoidance 36 227 263

Peanut Consumption 5 262 267
Sum 41 489 530

Table 8.14: LEAP Study Results

8.3.5 Fisher’s exact test

If sample sizes are too small, the χ2 distribution does not yield accurate p-values for
assessing independence of the row and column variables in a table. When expected counts
in a table are less than 10, Fisher’s exact test is often used to calculate exact levels of
significance. This test is usually applied to 2× 2 tables. It can be applied to larger tables,
but the logic behind the test is complex and the calculations involved are computationally
intensive, so this section covers only 2× 2 tables.

Clostridium difficile is a bacterium that causes inflammation of the colon. Antibiotic
treatment is typically not effective, particularly for patients who experience multiple re-
currences of infection. Infusion of feces from healthy donors has been reported as an
effective treatment for recurrent infection. A randomized trial was conducted to compare
the efficacy of donor-feces infusion versus vancomycin, the antibiotic typically prescribed
to treat C. difficile infection. The results of the trial are shown in Table 8.15.20 A brief cal-
culation shows that all of the expected cell counts are less than 10, so the χ2 test should
not be used as a test for association.

Under the null hypothesis, the probabilities of cure in the fecal infusion and van-
comycin groups are equal; i.e., individuals in one group are just as likely to be cured as
individuals in the other group. Suppose the probability that an individual is cured, given

18R1,1 = (44.6−60)√
44.6

= 2.31; R1,2 = (42.4−27)√
27

= −2.37; R2,1 = (87−102.4)√
102.4

= −1.53; R2,2 = (113−97.6)√
97.6

= 1.56. The

positive residuals for the upper left and lower right cells indicate that more infants than expected experienced
virologic failure on NVP and stable disease on LPV; vice versa for the upper right and lower left cells. The larger
magnitude of the residuals for the two NVP cells indicates that most of the discrepancy between observed and
expected counts is for outcomes related to NVP.

19The assumptions for conducting a χ2 test are satisfied. Calculate a χ2 test statistic: 24.29. The associated p-
value is 8.3×10−7. There is evidence to suggest that treatment group is not independent of outcome. Specifically,
a residual analysis shows that in the peanut avoidance group, more children than expected failed the OFC; in
the peanut consumption group, more children than expected passed the OFC.

20These results correspond to the number of patients cured after the first infusion of donor feces and the
number of patients cured in the vancomycin-alone group.
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that he or she was assigned to the fecal infusion group, is p1 and the probability an indi-
vidual is cured in the vancomycin group is p2. Researchers were interested in testing the
null hypothesis H0: p1 = p2.

Cured Uncured Sum
Fecal Infusion 13 3 16

Vancomycin 4 9 13
Sum 17 12 29

Table 8.15: Fecal Infusion Study Results

The p-value is the probability of observing results as or more extreme than those
observed in the study under the assumption that the null hypothesis is true. Previously
discussed methods for significance testing have relied on calculating a test statistic associ-
ated with a defined sampling distribution, then obtaining p-values from tail areas on the
distribution. Fisher’s exact test uses a similar approach, but introduces a new sampling
distribution.

The p-value for Fisher’s exact test is calculated by adding together the individual
conditional probabilities of obtaining each table that is as or more extreme than the one
observed, under the null hypothesis and given that the marginal totals are considered
fixed.

– When the row and column totals are held constant, the value of any one cell in
the table determines the rest of the entries. For example, if the marginal sums in
Table 8.15 are known, along with the value in one cell (e.g., the upper right equals
3), it is possible to calculate the values in the other three cells. Thus, when marginal
totals are considered fixed, each table represents a unique set of results.

– Extreme tables are those which contradict the null hypothesis of p1 = p2. In the fecal
infusion group, under the null hypothesis of no difference in the population propor-
tion cured, one would expect 16×17

29 = 9.38 cured individuals. The 13 observed cured
individuals is extreme in the direction of more being cured than expected under the
null hypothesis. An extreme result in the other direction would be, for instance, 1
cured patient in the fecal infusion group and 16 in the vancomycin group.

 Example 8.27 Of the 17 patients cured, 13 were in the fecal infusion group and
4 were in the vancomycin group. Assume that the marginal totals are fixed (i.e.,
17 patients were cured, 12 were uncured, and 16 patients were in the fecal infu-
sion group, while 13 were in the vancomycin group). Enumerate all possible sets of
results that are more extreme than what was observed, in the same direction.

The observed results show a case of p̂1 > p̂2; results that are more extreme consist of
cases where more than 13 cured patients were in the fecal infusion group. Under the
assumption that the total number of cured patients is constant at 17 and that only
16 patients were assigned to the fecal infusion group (out of 29 patients total), more
extreme results are represented by cases where 14, 15, or 16 cured patients were in
the fecal infusion group. The following tables illustrate the unique combinations of
values for the 4 table cells corresponding to those extreme results.
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Cured Uncured Sum
Fecal Infusion 14 2 16

Vancomycin 3 10 13
Sum 17 12 29

Cured Uncured Sum
Fecal Infusion 15 1 16

Vancomycin 2 11 13
Sum 17 12 29

Calculating a one-sided p-value

Suppose that researchers were interested in testing the null hypothesis against the one-
sided alternative,HA : p1 > p2. To calculate the one-sided p-value, sum the probabilities of
each table representing results as or more extreme than those observed; specifically, sum
the probabilities of observing Table 8.15 and the tables in Example 8.27.

The probability of observing a table with cells a,b,c,d given fixed marginal totals
a+ b, c + d, a+ c, and b + d follows the hypergeometric distribution. The hypergeometric
distribution was introduced in Section 3.5.3.

P (a,b,c,d) = HGeom(a+ b,c+ d,a+ c) =
(a+b
a

)(c+d
c

)( n
a+c

) =
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

a! b! c! d! n!

 Example 8.28 Calculate the probability of observing Table 8.15, assuming the mar-
gin totals are fixed.

P (13,3,4,9) =
(16
13
)(13

4
)(29

17
) =

16! 13! 17! 12!
13! 3! 4! 9! 29!

= 7.71× 10−3.

The value 0.0077 represents the probability of observing 13 cured patients out of 16
individuals in the fecal infusion group and 1 cured in the vancomycin group, given
that there are a total of 29 patients and 17 were cured overall.

 Example 8.29 Evaluate the statistical significance of the observed data in Table 8.15
using the one-sided alternative HA : p1 > p2.

Calculate the probability of the tables from Example 8.27. Generally, the formula
for these tables is

P (a,b,c,d) =
(a+b
a

)(c+d
c

)( n
a+c

) =
(16
a

)(13
c

)(29
17
) ,

since the marginal totals from Table 8.15 are fixed. The value a ranges from 14, 15,
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Cured Uncured Sum
Fecal Infusion 16 0 16

Vancomycin 1 12 13
Sum 17 12 29

Cured Uncured Sum
Fecal Infusion a b a+ b

Vancomycin c d c+ d
Sum a+ c b+ d n

Table 8.16: General Layout of Data in Fecal Infusion Study

16, while c ranges from 3, 2, 1.

P (14,2,3,10) =
(16
14
)(13

3
)(29

17
) = 6.61× 10−4

P (15,1,2,11) =
(16
15
)(13

2
)(29

17
) = 2.40× 10−5

P (16,0,1,12) =
(16
16
)(13

1
)(29

17
) = 2.51× 10−7

The probability of the observed table is 7.71 × 10−3, as calculated in the previous
example.

The one-sided p-value is the sum of these table probabilities: (7.71× 10−3) + (6.61×
10−4) + (2.40× 10−5) + (2.51× 10−7) = 0.0084.

The results are significant at the α = 0.05 significance level. There is evidence to
support the one-sided alternative that the proportion of cured patients in the fecal
infusion group is higher than the proportion of cured patients in the vancomycin
group. However, it is important to note that two-sided alternatives are the standard
in medical literature. Conducting a two-sided test would be especially desirable
when evaluating a treatment which lacks randomized trials supporting its efficacy,
such as donor-feces infusion.

Calculating a two-sided p-value

There are various methods for calculating a two-sided p-value in the Fisher’s exact test set-
ting. When the test is calculated by hand, the most common way to calculate a two-sided
p-value is to double the smaller of the one-sided p-values. One other common method
used by various statistical computing packages such as R is to classify "more extreme" ta-
bles as all tables with probabilities less than that of the observed table, in both directions.
The two-sided p-value is the sum of probabilities for the qualifying tables. That approach
is illustrated in the next example.

 Example 8.30 Evaluate the statistical significance of the observed data in Table 8.15
using the two-sided alternative HA : p1 , p2.

Identify tables that are more extreme in the other direction of the observed result,
i.e. where the proportion of cured patients in the vancomycin group are higher
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than in the fecal infusion group. Start with the most extreme cases and calculate
probabilities until a table has a p-value higher than 7.71 × 10−3, the probability of
the observed table.

The most extreme result in the p̂1 < p̂2 direction would be if all patients in the
vancomycin group were cured; then 13 of the cured patients would be in the van-
comycin group and 4 would be in the fecal transplant group. This table has proba-
bility 3.5× 10−5.

Cured Uncured Sum
Fecal Infusion 4 12 16

Vancomycin 13 0 13
Sum 17 12 29

Continue enumerating tables by decreasing the number of cured patients in the van-
comycin group. The table with 5 cured patients in the fecal infusion group has
probability 1.09× 10−3.

Cured Uncured Sum
Fecal Infusion 5 11 16

Vancomycin 12 1 13
Sum 17 12 29

The table with 6 cured patients in the fecal infusion group has probability 0.012.
This value is greater than 7.71 × 10−3, so it will not be part of the sum to calculate
the two-sided p-value.

Cured Uncured Sum
Fecal Infusion 6 10 16

Vancomycin 11 2 13
Sum 17 12 29

As calculated in the previous example, the one-sided p-value is 0.0084. Thus, the
two-sided p-value for these data equals 0.0084 + (3.5×10−5) + (1.09×10−3) = 0.0095.
The results are significant at the α = 0.01 significance level, and there is evidence to
support the efficacy of donor-feces infusion as a treatment for recurrent C. difficile
infection.
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8.4 Chi-square tests for the fit of a distribution
(special topic)

The χ2 test can also be used to examine the appropriateness of hypothesized distribution
for a dataset, most commonly when a set of observations falls naturally into categories as
in the examples discussed in this section. As with testing in the two-way table setting, ex-
pected counts are calculated based on the assumption that the hypothesized distribution
is correct, and the statistic is based on the discrepancies between observed and expected
counts. The χ2 sampling distribution for the test statistic is reasonably accurate when
each expected count is at least 5 and follows a χ2 distribution with k − 1 degrees of free-
dom, where k is the number of categories. Some guidelines recommend that no more than
1/5 of the cells have expected counts less than 5, but the stricter requirement that all cells
have expected counts greater than 5 is safer.

When used in this setting, the χ2 test is often called a ‘goodness-of-fit’ test, a term
that is often misunderstood. Small p-values of the test suggest evidence that a hypothe-
sized distribution is not a good model, but non-significant p-values do not imply that the
hypothesized distribution is the best model for the data, or even a good one. In the logic
of hypothesis testing, failure to reject a null hypothesis cannot be viewed as evidence that
the null hypothesis is true.

 Example 8.31 The participants in the FAMuSS study were volunteers at a univer-
sity, and so did not come from a random sample of the US population. The partic-
ipants may not be representative of the general United States population. The χ2

test can be used to test the null hypothesis that the participants are racially repre-
sentative of the general population. Table 8.17 shows the number observed by racial
category in FAMuSS and the proportions of the US population in each of those cat-
egories.21

Race African American Asian Caucasian Other Total
FAMuSS 27 55 467 46 595
US Census 0.128 0.01 0.804 0.058 1.00

Table 8.17: Representation by race in the FAMuSS study versus the general
population.

Under the null hypothesis, the sample proportions should equal the population pro-
portions. For example, since African Americans are 0.128 of the general proportion,
(0.128)(595) = 76.16 African Americans would be expected in the sample. The rest
of the expected counts are shown in Table 8.18.

Race African American Asian Caucasian Other Total
Observed 27 55 467 46 595
Expected 76.16 5.95 478.38 34.51 595

Table 8.18: Actual and expected counts in the FAMuSS data.

21The US Census Bureau considers Hispanic as a classification separate from race, on the basis that Hispanic
individuals can be any race. In order to facilitate the comparison with the FAMuSS data, participants identified
as "Hispanic" have been merged with the "Other" category.
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Since each expected count is greater than or equal to 5, the χ2 distribution can be
used to calculate a p-value for the test.

χ2 =
∑

all cells

(observed− expected)2

expected

=
(27− 76.16)2

76.16
+

(55− 5.95)2

5.95
+

(467− 478.38)2

478.38
+

(46− 34.51)2

34.51
= 440.18

There are 3 degrees of freedom, since k = 4. The χ2 statistic is extremely large, and
the associated tail area is smaller than 0.001. There is more than sufficient evidence
to reject the null hypothesis that the sample is representative of the general popula-
tion. A comparison of the observed and expected values (or the residuals) indicates
that the largest discrepancy is with the over-representation of Asian participants.

 Example 8.32 According to Mendelian genetics, alleles segregate independently;
if an individual is heterozygous for a gene and has alleles A and B, then the alleles
have an equal chance of being passed to an offspring. Under this framework, if two
individuals with genotype AB mate, then their offspring are expected to exhibit a
1:2:1 genotypic ratio; 25% of the offspring will be AA, 50% will be AB, and 50%
will be BB. The term "segregation distortion" refers to a deviation from expected
Mendelian frequencies.

At a specific gene locus in the plant Arabidopsis thaliana, researchers have observed
84 AA individuals, 233 AB individuals, and 134 BB individuals. Is there evidence
of segregation disorder at this locus? Conduct the test at α = 0.0001 to account
for multiple testing, since the original study examined approximately 250 locations
across the genome.

The Mendelian proportions are 25%, 50%, and 25%. Thus, the expected counts in
a group of 451 individuals are: 112.75 AA, 225.50 AB, and 112.75 BB. No expected
count is less than 5.

χ2 =
∑

all cells

(observed− expected)2

expected

=
(84− 112.75)2

112.75
+

(233− 225.50)2

225.50
+

(134− 112.75)2

112.75
= 11.59

There are 2 degrees of freedom, since k = 3. The p-value is between 0.005 and 0.001,
which is greater than α = 0.0001. There is insufficient evidence to reject the null
hypothesis that the offspring ratios correspond to expected Mendelian frequencies;
i.e., there is not evidence of segregation distortion at this locus.

8.5 Outcome-based sampling: case-control studies
(special topic)
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8.5.1 Introduction

The techniques so far in this chapter have often relied on the assumption that the data
were collected using random sampling from a population. When cases come from a ran-
dom sample, the sample proportion of observations with a particular outcome should
accurately estimate the population proportion, given that the sample size is large enough.
When studying rare outcomes, however, moderate sized samples may contain few or none
of the outcomes. Persistent pulmonary hypertension of the newborn (PPHN) is a danger-
ous condition in which the blood vessels in the lungs of a newborn do not relax immedi-
ately after birth, leading to inadequate oxygenation. The condition is rare, occurring in
about 1.9 per 1,000 live births, so it is difficult to study using random sampling. In the
early 2000s, anecdotal evidence began to accumulate that the risk of the condition might
be increased if the mother of the newborn had been taking a particular medication for
depression, a selective serotonin reuptake inhibitor (SSRI) during the third trimester of
pregnancy or even as early as during week 20 of the pregnancy.

One design for studying the issue would enroll two cohorts of women, one in which
women were taking SSRIs for depression and one in which they were not. However, if the
chance of PPHN was 1.9/1,000 in newborns of a control cohort of 1,000 women, then the
probability of observing no cases of PPHN is about 0.15. If the probability of PPHN is
elevated among infants born to women taking SSRIs, such as to 3.0/1,000, the chance of
observing no cases among 1,000 women is approximately 0.05. Precise measures of the
probability of PPHN occurring would require very large cohorts.

An alternative design for studies like this reverses the sampling scheme so that the
two cohorts are determined by outcome, rather than exposure; a cohort with the condition
and a cohort without the condition are sampled, then exposure to a possible cause is
recorded. To apply this design for studying PPHN, a registry of live births could be used
to sort births by presence or absence of PPHN. The number in each group in which the
mother had been taking SSRIs could then be recorded (based on medical records). Such a
design would have the advantage of sufficient numbers of cases with and without PPHN,
but it has other limitations which will be discussed later in this section. Traditionally,
these studies have been called case-control studies because of the original sampling of
individuals with and without a condition. More generally, it is an example of outcome-
dependent sampling.

8.5.2 χ2 tests of association in case-control studies

In 2006, Chambers, et. al reported a case-control study examining the association of SSRI
use and persistent pulmonary hypertension in newborns.22 The study team enrolled 337
women whose infants suffered from PPHN and 836 women with similar characteristics
but whose infants did not have PPHN. Among the women whose infants had PPHN, 14
had taken an SSRI after week 20 of the pregnancy. In the cohort of women whose infants
did not have PPHN, 6 had been taking the medication after week 20. In the subset of
women who had been taking an SSRI, the infants are considered ‘exposed’ to the medica-
tion. The data from the study are summarized in Table 8.19.

The sample of women participating in the study are clearly not a random sample
drawn from women who had recently given birth; they were identified according to the
disease status of their infants. In this sample, the proportion of newborns with PPHN
(337/1173 = 28.7%) is much higher than the disease prevalence in the general population.

22N Engl J Med 2006;354:579-87.
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PPHN present Yes No Total
SSRI exposed 14 6 20
SSRI unexposed 323 830 1153
Total 337 836 1173

Table 8.19: SSRI exposure vs observed number of PPHN cases in new-
borns.

Even so, the concept of independence between rows and columns under a null hy-
pothesis of no association still holds. If SSRI use had no effect on the occurrence of PPHN,
then the proportions of mothers taking SSRIs among the PPHN and non-PPHN infants
should be about the same. In other words, the null hypothesis of equal SSRI use among
mothers with/without PPHN affected infants is the hypothesis of no association between
SSRI use and PPHN. The test of independence can be conducted using the approach in-
troduced earlier in the chapter.

The expected counts shown in Table 8.20 suggest that the p-value from a χ2 test may
not be accurate; under the null hypothesis, the expected number of PPHN cases in the
SSRI exposed group is less than 10.

PPHN present Yes No Total
SSRI exposed 5.80 14.20 20
SSRI unexposed 331.20 811.80 1153
Total 337 836 1173

Table 8.20: SSRI exposure vs expected number of PPHN cases in newborn.

The p-value from Fisher’s exact test is < 0.001 (0.00014, to be precise), so the evidence
is strong that SSRI exposure and PPHN are associated. Fisher’s exact test is often used in
studies of rare conditions or exposures since one or more expected cell counts are typically
less than 10.

8.5.3 Estimates of association in case-control studies

For data in a 2× 2 table, correct point estimates of association depend on the mechanism
used to gather the data. In the example of a clinical trial of nevirapine versus lopinarvir
discussed in Section 8.3.1, the population proportion of children who would experience
virologic failure after treatment with one of the drugs can be estimated by the observed
proportion of virologic failures while on that drug. For nevirapine, the proportion of
children with virologic failure is 60/147 = 0.41, while for lopinarvir the proportion is
27/140 = 0.19. The difference in outcome between the two groups can be summarized by
the difference in these proportions. The proportion experiencing virologic failure when
treated with nevirapine was 0.12 larger in nevirapine (0.41 - 0.29), so if the two drugs
were to be used in a large population, approximately 12% more children treated with
nevirapine would experience virologic failure as compared to lopinarvir. The confidence
intervals discussed in Section 8.2.2 can be used to express the uncertainty in this estimate.

Since the proportion of virologic failures can be estimated from the trial data, the
relative risk of virologic failure can also be used to estimate the association between treat-
ment and virologic failure. Relative risk is the ratio of two proportions, and was intro-
duced in Section 1.6.2. The relative risk of virologic failure with nevirapine versus lop-
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inarvir is 0.41/0.19 = 2.16. Children treated with nevirapine are estimated to be more
than twice as likely to experience virologic failure.

Statistically, the population parameter for the relative risk in the study of HIV+ is a
ratio of conditional probabilities:

P (virologic failure|treatment with nevirapine)
P (virologic failure|treatment with lopinarvir)

.

In a study like the PPHN case-control study, the natural population parameter of
interest would be the relative risk of PPHN for infants exposed to an SSRI during af-
ter week 20 of gestation compared to those who were not exposed. However, in the de-
sign of this study, participating mothers were sampled and grouped according to whether
their infants did or did not suffer from PPHN, rather than assigned to either SSRI ex-
posure or non-exposure. Relative risk of PPHN from exposure to SSRI cannot be esti-
mated from the data because it is not possible to estimate P (PPHN|SSRI exposure) and
P (PPHN|no SSRI exposure). In case-control studies, association is estimated using odds
and odds ratios rather than relative risk.

The odds of SSRI exposure among the cases are given by the fraction

oddscases =
P (SSRI exposure|PPHN)
P (no SSRI exposure|PPHN)

=
14/337

323/337
=

14
323

.

The odds of SSRI exposure among the controls are given by the fraction

oddscontrols =
P (SSRI exposure|no PPHN)
P (no SSRI exposure|no PPHN)

=
6/836

830/836
=

6
830

.

The ratio of the odds, the odds ratio, compares the odds of exposure among the cases
to the odds of exposure among the controls.

ORexposure, cases vs. controls =
oddscases

oddscontrols
=

14/323
6/830

=
(14)(830)
(323)(6)

= 6.00

A population odds ratio of, for example, 1.5, implies that the odds of exposure in
cases are 50% larger than the odds of exposure in controls. For this study, the odds ratio
of 6.00 implies that the odds of SSRI exposure in infants with PPHN are 6 times as large
as the odds of exposure in infants without PPHN. Epidemiologists describe this odds ratio
as the odds of exposure given presence of PPHN compared to the odds of exposure given
absence of PPHN. An OR greater than 1 suggests that the exposure may be a risk factor
for the disease or condition under study.

Surprisingly, the odds ratio of exposure comparing cases to controls is equivalent to
the odds ratio of disease comparing exposed to unexposed.23 With a specific example, it
is easy to see how the fraction for the odds ratios are numerically equivalent:

ORdisease, exposed versus unexposed =
oddsexposed

oddsunexposed
=

14/6
323/830

=
(14)(830)
(6)(323)

= 6.00

Despite the apparently restrictive nature of the case-control sampling design, the
odds ratio of interest, the odds ratio for disease given exposure, can be estimated from
case-control data.

23This result can be shown through Bayes’ rule.



346 CHAPTER 8. INFERENCE FOR CATEGORICAL DATA

Epidemiologists rely on one additional result, called the rare disease assumption.
When a disease is rare, the odds ratio for the disease given exposure is approximately
equal to the relative risk of the disease given exposure. These identities are the reason
case-control studies are widely used in settings in which a disease is rare: it allows for the
relative risk of disease given exposure to be estimated, even if the study design is based
on sampling cases and controls then measuring exposure.

In a general 2 × 2 table of exposure versus disease status (Table 8.21) the odds ratio
for disease given exposure status is the ad/bc.

Disease Status Present Absent Total
Exposed a b a+ b
Unexposed c d c+ d
Total a+ c b+ d n

Table 8.21: Exposure vs Disease Status

In the PPHN case-control data, the odds ratio for PPHN given SSRI exposure status
is (14)(830)/(6)(323) = 6.00. Because PPHN is a rare condition, the risk of PPHN among
infants exposed to an SSRI is estimated to be approximately 6 times that of the risk among
unexposed infants. Infants exposed to an SSRI are 600% more likely to suffer from PPHN.

It can be shown that the p-value used in a test of no association (between exposure
and disease) is also the p-value for a test of the null hypothesis that the odds ratio is 1.
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8.6 Notes

Two-way tables are often used to summarize data from medical research studies, and
entire texts have been written about methods of analysis for these tables. This chapter
covers only the most basic of those methods.

Until recently, Fisher’s exact test could only be calculated for 2× 2 tables with small
cell counts. Research has produced faster algorithms for enumerating tables and calculat-
ing p-values, and the computational power of recent desktop and laptop computers now
make it possible to calculate the Fisher test on nearly any 2 × 2 table. There are also ver-
sions of the test that can be calculated on tables with more than 2 rows and/or columns.
The practical result for data analysts is that the sample size condition for the validity of
the χ2 test can be made more restrictive. This chapter recommends using the χ2 test only
when cell counts in a 2 × 2 table are greater than 10; some approaches recommend cell
counts larger than 10.

For many years, introductory textbooks recommended using a modified version of
the χ2 test, called the Fisher-Yates test, which adjusted the value of the statistic in small
sample sizes to increase the accuracy of the χ2 sampling distribution in calculating p-
values. The Fisher-Yates version of the test is no longer used as often because of the
widespread availability of the Fisher test.

The Fisher test is not without controversy, at least in the theoretical literature. Con-
ditioning on the row and column totals allows the calculation of a p-value from the hy-
pergeometric distribution, but in principle restricts inference to the set of tables with the
same row and column values. In practice, this is less serious than it may seem. For ta-
bles of moderate size, the p-values from the χ2 and Fisher tests are nearly identical and
for tables with small counts, the Fisher test guarantees that the Type I error will be no
larger than the specified value of α. In small sample sizes, some statisticians argue that
the Fisher-Yates correction is preferable to the Fisher test because of the discrete nature of
the hypergeometric distribution. In small tables, for example, an observed p-value of 0.04
may be the largest value that is less than 0.05, such that the Type I error of the test in that
situation is 0.04, not 0.05.

Section 8.5.3 does not show the derivation that the odds ratio estimated from a case-
control is the same as that from a cohort study. It is long and algebraically more complex
than other derivations shown in the text, but it is a direct application of Bayes’ rule, ap-
plied to each term in the fraction that defines population odds ratio.

The two labs for this chapter examine methods of inference for the success prob-
ability in binomial data then generalizes inference for binomial proportions to two-way
contingency tables. Lab 2 also discusses measures of association in two-by-two tables. The
datasets in the labs are similar to datasets that arise frequently in medical statistics. Lab 1
assesses the the evidence for a treatment effect in a single uncontrolled trial of a new drug
for melanoma and whether outcomes in stage 1 lung cancer are different among patients
treated at Dana-Farber Cancer Institute compared to population based statistics. In Lab
2, students analyze a dataset from a published clinical trial examining the benefit of using
a more expensive but potentially more effective drug to treat HIV-positive infants.



Appendix A

Distribution tables

A.1 Normal Probability Table

The area to the left of Z represents the percentile of the observation. The normal proba-
bility table always lists percentiles.

negative Z

Y

positive Z

To find the area to the right, calculate 1 minus the area to the left.

1.0000 0.6664 0.3336 = 

For additional details about working with the normal distribution and the normal proba-
bility table, see Section 3.3, which starts on page 135.

348
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negative Z

Second decimal place of Z
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Z

0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 −3.4
0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 −3.3
0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 −3.2
0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 −3.1
0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013 −3.0

0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 −2.9
0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 −2.8
0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 −2.7
0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 −2.6
0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 −2.5
0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 −2.4
0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 −2.3
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 −2.2
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 −2.1
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 −2.0

0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 −1.7
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 −1.6
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 −1.5
0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 −1.4
0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 −1.3
0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 −1.2
0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 −1.1
0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 −1.0

0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 −0.9
0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 −0.8
0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 −0.7
0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 −0.6
0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 −0.5
0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 −0.4
0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 −0.3
0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 −0.2
0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 −0.1
0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 −0.0
∗For Z ≤ −3.50, the probability is less than or equal to 0.0002.



350 APPENDIX A. DISTRIBUTION TABLES

Y
positive Z

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
∗For Z ≥ 3.50, the probability is greater than or equal to 0.9998.
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A.2 t-Probability Table

−3 −2 −1 0 1 2 3

One tail

−3 −2 −1 0 1 2 3

One tail

−3 −2 −1 0 1 2 3

Two tails

Figure A.1: Tails for the t-distribution.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75
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one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 31 1.31 1.70 2.04 2.45 2.74
32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70

41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68

60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63

100 1.29 1.66 1.98 2.36 2.63
150 1.29 1.66 1.98 2.35 2.61
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59

∞ 1.28 1.65 1.96 2.33 2.58
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A.3 Chi-Square Probability Table

0 5 10 15

Figure A.2: Areas in the chi-square table always refer to the right tail.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83

2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

8 9.52 11.03 13.36 15.51 18.17 20.09 21.95 26.12

9 10.66 12.24 14.68 16.92 19.68 21.67 23.59 27.88

10 11.78 13.44 15.99 18.31 21.16 23.21 25.19 29.59

11 12.90 14.63 17.28 19.68 22.62 24.72 26.76 31.26

12 14.01 15.81 18.55 21.03 24.05 26.22 28.30 32.91

13 15.12 16.98 19.81 22.36 25.47 27.69 29.82 34.53

14 16.22 18.15 21.06 23.68 26.87 29.14 31.32 36.12

15 17.32 19.31 22.31 25.00 28.26 30.58 32.80 37.70

16 18.42 20.47 23.54 26.30 29.63 32.00 34.27 39.25

17 19.51 21.61 24.77 27.59 31.00 33.41 35.72 40.79

18 20.60 22.76 25.99 28.87 32.35 34.81 37.16 42.31

19 21.69 23.90 27.20 30.14 33.69 36.19 38.58 43.82

20 22.77 25.04 28.41 31.41 35.02 37.57 40.00 45.31

25 28.17 30.68 34.38 37.65 41.57 44.31 46.93 52.62

30 33.53 36.25 40.26 43.77 47.96 50.89 53.67 59.70

40 44.16 47.27 51.81 55.76 60.44 63.69 66.77 73.40

50 54.72 58.16 63.17 67.50 72.61 76.15 79.49 86.66
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