
Survival Analysis in R
July 2021

David M Diez
OpenIntro

openintro.org

This document is intended to assist individuals who are

1. knowledgable about the basics of survival analysis,

2. familiar with vectors, matrices, data frames, lists, plotting, and linear models in R, and

3. interested in applying survival analysis in R.

This guide emphasizes the survival package1 in R2. Following very brief introductions to material,
functions are introduced to apply the methods. A few short supplemental functions have been
written and are available in the OIsurv package3, and data sets from the KMsurv package4 are
also used. This guide may be a particularly helpful supplement for Klein and Moeschberger’s book,
with which KMsurv is associated.

Ideally, this survival analysis document would be printed front-to-back and bound like a book. No
topics run over two pages. Those that are two pages start on an even page, preventing the need to
flip between pages for a single topic. All sample code may be run provided the OIsurv package is
loaded, which automatically loads the survival and KMsurv packages. Details about installing
and loading the OIsurv package are described in the first section, which discusses R packages.

This document is released under a Creative Commons Attribution-ShareAlike 3.0 license. For
questions or other inquiries, please contact David Diez. The latest version of this document can
always be found at www.openintro.org/book/surv in r along with other resources.

The most recent update in 2021 focused on fixing links and package installation instructions.

Table of Contents

The survival, OIsurv, and KMsurv packages 2
Survival objects 3
Kaplan-Meier estimate & pointwise bounds 4
Simultaneous confidence bands 6
Cumulative hazard function 7
Mean and median estimates with bounds 8
Tests for two or more samples 9
Cox PH models, contant covariates 10
Cox PH models, time-dependent covariates 12
Accelerated failure-time models 14
Acknowledgements, References, & Resources 16

1

http://www.openintro.org
http://www.amazon.com/dp/1441929851
http://creativecommons.org/licenses/by-sa/3.0/
http://openintro.org/team
http://www.openintro.org/book/surv_in_r

The survival, OIsurv, and KMsurv packages

The survival package1, KMsurv4, and OIsurv3 packages are used heavily in this guide. Most
data sets are from KMsurv, which supports Klein and Moeschberger’s book5, while functions
mostly come from survival with a few extras from OIsurv. To install these packages:

> install.packages("devtools")

> library(devtools)

> install_github("OpenIntroStat/OIsurv")

Installing OIsurv automatically installs KMsurv, while survival is probably already installed.
Loading OIsurv in R also loads all three packages:

> library(OIsurv) # the survival package depends on the splines package

Loading required package: survival

Loading required package: KMsurv

To view available data sets in the KMsurv package, use library(help=KMsurv). To load a data
set, use the function data():

> data(aids)

> aids

infect induct adult

1 0.00 5.00 1

2 0.25 6.75 1

...

295 7.25 0.25 0

The ellipsis (...) denotes output omitted for brevity in this tutorial. Occasionally the ellipsis will
itself be omitted.

The attach() function is used to make a data frame’s columns available for use as variables.

> attach(aids)

> infect

[1] 0.00 0.25 0.75 0.75 0.75 1.00 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.50

...

[295] 7.25

Good programming practices include detaching data sets no longer in use. It is common for data
sets to share column (variable) names, so failing to detach a data frame before attaching another
may produce incorrect results without any warnings or errors. While attach() and detach() are
used in this tutorial to simplify notation, students may employ the $ operator to access columns
within a data frame to avoid this danger altogether:

> detach(aids)

> aids$infect

[1] 0.00 0.25 0.75 0.75 0.75 1.00 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.50

...

[295] 7.25

2

Survival objects:
Surv(time, event), Surv(time, time2, event, type)

Many functions in the survival package apply methods to Surv objects, which are survival-type
objects created using the Surv() function. Here we discuss the construction of right-censored Surv

objects and left-truncated right-censored Surv objects. See reference 6 for descriptions of survival
data types.

For right-censored data, only two arguments are needed in the Surv() function: a vector of times
and a vector indicating which times are observed and censored.

> data(tongue)

> attach(tongue) # the following will not affect computations

The following object(s) are masked from package:stats :

time

> # create a subset for just the first group by using [type==1]

> my.surv.object <- Surv(time[type==1], delta[type==1])

> my.surv.object

[1] 1 3 3 4 10 13 13 16 16 24 26 27 28 30

...

[43] 101+ 104+ 108+ 109+ 120+ 131+ 150+ 231+ 240+ 400+

> detach(tongue)

The plus-signs identify those observations that are right-censored. The first argument in Surv()

should be input as a vector of observed and right-censored times. An indicator vector is used in
the second argument to signify whether the event was observed (1) or not (0). Boolean arguments
may be used in place of 1 and 0 in the indicator vector.

We also consider left-truncated right-censored data. The left-truncation times are entered as the
first argument, a vector of the event and censored times is input into the second argument, and an
indicator vector for right-censoring is input as the third argument.

> data(psych); attach(psych)

> my.surv.object <- Surv(age, age+time, death)

> my.surv.object

[1] (51,52] (58,59] (55,57] (28,50] (21,51+] (19,47] (25,57]

...

[22] (29,63+] (35,65+] (32,67] (36,76] (32,71+]

> detach(psych)

The left-truncated right-censored observations are described in the Surv help documentation to
be of type "counting".

Note. There are many other types of survival objects that can be created, but they are not
covered in this tutorial. Additionally, some survival functions in R only accept a few types of
survival data.

3

Kaplan-Meier estimate and pointwise bounds:
survfit(formula, conf.int = 0.95, conf.type = "log")

The Kaplan-Meier estimate is a nonparametric maximum likelihood estimate (MLE) of the survival
function, S(t). This estimate is a step function with jumps at observed event times, ti. In the
mathematics below, it is assumed the ti are ordered: 0 < t1 < t2 < · · · < tD. If the number
of individuals with an observed event time ti is di, and the value Yi represents the number of
individuals at risk at time ti (where at risk means individuals who die at time ti or later), then the
Kaplan-Meier estimate of the survival function and its estimated variance are given by

Ŝ(t) =

{
1 if t < t1∏

ti≤t

[
1− di

Yi

]
if t1 ≤ t

V̂ [Ŝ(t)] =
[
Ŝ(t)

]2
σ̂2S(t) =

[
Ŝ(t)

]2∑
ti≤t

di
Yi(Yi − di)

The pointwise confidence bounds for the "plain" (linear) and "log-log" options provided in R
are given by (

Ŝ − Z1−α/2σ̂S(t)Ŝ(t), Ŝ + Z1−α/2σ̂S(t)Ŝ(t)
)

(
Ŝ1/θ(t), Ŝθ(t)

)
, where θ = exp

{
Z1−α/2σ̂S(t)

log Ŝ(t)

}

The Kaplan-Meier estimate is fit in R using the function survfit(). The simplest fit takes as input
a formula of a survival object against an intercept:

> data(tongue)

> attach(tongue)

> my.surv <- Surv(time[type==1], delta[type==1])

> survfit(my.surv ~ 1)

Call: survfit(formula = my.surv)

n events median 0.95LCL 0.95UCL

52 31 93 67 Inf

Survfit() also has a number of optional arguments. For example, the confidence level may be
changed using the second argument, conf.int (e.g. conf.int=0.90 for 90% confidence bounds).
The conf.type argument describes the type of confidence interval. More specifically, it describes
the transformation for constructing the confidence interval. The default is "log", which equates
to the transformation function g(t) = log(t). The "log-log" option uses g(t) = log(− log(t)). A
linear confidence interval is created using the argument conf.type="plain". In the current version
of the survival package (version 2.36-10), the arcsine-squareroot transformation must be computed
manually using components of the object returned by survfit().

Like many functions in R, the survfit() function returns hidden information that can be accessed
with the proper commands. Below we consider several elements of this hidden information, which
is stored in a list. For a complete summary of the object, apply the str function to my.fit and to
summary(my.fit).

4

> my.fit <- survfit(my.surv)

> summary(my.fit)$surv # returns the Kaplan-Meier estimate at each t_i

> summary(my.fit)$time # {t_i}

> summary(my.fit)$n.risk # {Y_i}

> summary(my.fit)$n.event # {d_i}

> summary(my.fit)$std.err # standard error of the K-M estimate at {t_i}

> summary(my.fit)$lower # lower pointwise estimates (alternatively, $upper)

> str(my.fit) # full summary of the my.fit object

> str(summary(my.fit)) # full summary of the my.fit object

The object returned by summary(my.fit) is a list. The str function is useful for seeing more
details about what is contained in the list, and as shown above, we can access each item in the list
using the $ operator.

The Kaplan-Meier estimate may be plotted using plot(my.fit). Standard arguments in the plot
function may be used to improve the graphical aesthetics:

> plot(my.fit, main="Kaplan-Meier estimate with 95% confidence bounds",

+ xlab="time", ylab="survival function")

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier estimate with 95% confidence bounds

time

su
rv

iv
al

 fu
nc

tio
n

Figure 1: Sample output where only the title, x-axis and y-axis labels have been specified.

Sometimes different groups are contained in a single Surv object. For instance, the type variable
in the tongue data set describes patient DNA profiles. We can obtain the Kaplan-Meier estimate
for each of these groups by regressing the Surv object on the type variable:

> my.fit1 <- survfit(Surv(time, delta) ~ type) # here the key is "type"

(It is also reasonable to use several variables on the right side of the equation.) The summary of
my.fit1 will contain an additional list item – strata, accessible via summary(my.fit1)$strata –
that designates which components of the output correspond to which groups.

Finally, for good coding practices, we detach the tongue data set.

> detach(tongue)

5

Simultaneous confidence bands
confBands(x, confType="plain", confLevel=0.9, type="ep")

Pointwise confidence intervals, like those introduced in the previous pages, apply to a single point
in the time scale. Now we turn our attention to simultaneous confidence bands (or confidence bands
for short), which are valid for the entire range of time values simultaneously. A 95% confidence
band, for example, will capture the entire true survival curve about 19 out of 20 times.

While the survival package doesn’t offer tools for confidence bands, they may be calculated using
confBands from the OIsurv library. The first argument is a survival object for x, and the other
arguments allow customization. The confType may be "plain", "log-log", or "asin-sqrt"; the
confLevel may be 0.90, 0.95, or 0.99; and the type may be "ep" or "hall" (Hall-Wellner).
There are also two optional arguments, tL and tU, that limit the support of the confidence bands.
Confidence bands may be added to a plot using the lines function.

> data(bmt); attach(bmt)

> my.surv <- Surv(t2[group==1], d3[group==1])

> my.cb <- confBands(my.surv, confLevel=0.95, type="hall")

> plot(survfit(my.surv ~ 1), xlim=c(100, 600), xlab="time",

+ ylab="Estimated Survival Function",

+ main="Reproducing Confidence Bands for Example 4.2 in Klein/Moeschberger")

100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reproducing Confidence Bands for Example 4.2 in Klein/Moeschberger

time

E
st

im
at

ed
 S

ur
vi

va
l F

un
ct

io
n

K−M survival estimate
pointwise intervals
confidence bands

Figure 2: Confidence intervals and bands. Note that the default for the pointwise confidence bands
is a log transformation, which results in asymmetric pointwise confidence intervals.

> lines(my.cb$time, my.cb$lower, lty=3, type="s")

> lines(my.cb$time, my.cb$upper, lty=3, type="s")

> legend(100, 0.3, legend=c("K-M survival estimate",

+ "pointwise intervals","confidence bands"), lty=1:3)

> detach(bmt)

6

Cumulative hazard function

The cumulative hazard function and the survival function are related in the following way for
continuous data:

S(t) = exp {−H(t)}

The MLE of the hazard function may be obtained by the inverse transformation of the Kaplan-Meier
estimate: Ĥ(t) = − log Ŝ(t). Another method to estimateH(t) is the Nelson-Aalen estimator:

H̃(t) =
∑
ti≤t

di
Yi

σ2H(t) =
∑
ti≤t

di
Y 2
i

While no function in the survival package calculates either form automatically, the object returned
by summary(survfit()) can be used to calculate the estimates:

> data(tongue); attach(tongue)

> my.surv <- Surv(time[type==1], delta[type==1])

> my.fit <- summary(survfit(my.surv ~ 1))

> H.hat <- -log(my.fit$surv)

> H.hat <- c(H.hat, tail(H.hat, 1))

A summary plot or table may be created using H.hat with my.fit$time. The Nelson-Aalen
estimator may also be constructed:

> h.sort.of <- my.fit$n.event / my.fit$n.risk

> H.tilde <- cumsum(h.sort.of)

> H.tilde <- c(H.tilde, tail(H.tilde, 1))

> plot(c(my.fit$time, 250), H.hat, xlab="time", ylab="cumulative hazard",

+ main="comparing cumulative hazards", ylim=range(c(H.hat, H.tilde)), type="s")

> points(c(my.fit$time, 250), H.tilde, lty=2, type="s")

> legend("topleft", legend=c("H.hat","H.tilde"), lty=1:2)

> detach(tongue)

0 50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

comparing cumulative hazards

time

cu
m

ul
at

iv
e

ha
za

rd

H.hat
H.tilde

Figure 3: Cumulative hazard estimates.

7

Mean and median estimates with bounds

The median survival time is the time t0.5 such that S(t0.5) = 0.5. This is visualized by graphing
the estimated survival function and drawing a horizontal line at 0.5. The estimated median equals
the time t̂0.5 where the function and line intersect. The confidence interval for t0.5 is given by the
points at which this horizontal line crosses over the pointwise confidence intervals of Ŝ(t).

The mean survival time and its respective estimate are given by

µ =

∫ ∞
0

S(t)dt, µ̂ =

∫ ∞
0

Ŝ(t)dt

If S(t) (or Ŝ(t)) does not converge to zero, the integral diverges. This property creates a challenge
for most data, and one resolution is to use a finite value τ as the bound for the integral, where τ
may represent the maximum survival time considered to be possible. Another reasonable choice
for τ is the maximum observed or censored time. Using a finite τ results in a new statistic and
corresponding estimate: µτ =

∫ τ
0 S(t)dt. Letting ti, Yi, di, and D be as described in the Kaplan-

Meier section, the estimated variance of µ̂τ is

V̂ (µ̂τ) =
D∑
i=1

[∫ τ

ti

Ŝ(t)dt

]2 di
Yi(Yi − di)

The median and its 95% confidence interval may be estimated using survfit():

> data(drug6mp); attach(drug6mp)

> my.surv <- Surv(t1, rep(1, 21)) # all placebo patients observed

> survfit(my.surv ~ 1)

Call: survfit(formula = my.surv ~ 1)

records n.max n.start events median 0.95LCL 0.95UCL

21 21 21 21 8 4 12

Using survfit() in conjunction with print(), the mean survival time and its standard error may
be obtained:

> print(survfit(my.surv ~ 1), print.rmean=TRUE)

Call: survfit(formula = my.surv ~ 1)

records n.max n.start events *rmean *se(rmean) median

21.00 21.00 21.00 21.00 8.67 1.38 8.00

0.95LCL 0.95UCL

4.00 12.00

* restricted mean with upper limit = 23

> detach(drug6mp)

The print.rmean=TRUE argument is used to obtain the mean and its standard error, and τ is
automatically set as the largest observed or censored time. Alternatively, τ may be specified using
the rmean argument.

8

Tests for two or more samples
survdiff(formula, rho=0)

Given two or more samples, is there a statistical difference between the survival times? We can
formulate the hypotheses in the context of hazard functions as

• H0 : h1(t) = h2(t) = · · · = hn(t) for all t, and

• HA : hi(t0) 6= hj(t0) for at least one pair i, j and time t0.

Let

• ti be times where events are observed (assume these are ordered and there are D such times),

• dik be the number of observed events from group k at time ti,

• Yik be the number of subjects in group k that are at risk at time ti (see K-M section),

• di =
∑n

j=1 dij ,

• Yi =
∑n

j=1 Yij , and

• W (ti) be the weight of the observations at time ti.

Then to test the hypothesis above, a vector Z is computed, where the kth element is

Zk =

D∑
i=1

W (ti)

[
dik − Yik

di
Yi

]
The covariance matrix Σ̂ is also computed from the data (see reference 5). Under the null hypothesis,
the test statistic X2 = Z ′Σ̂−1Z follows a χ2 distribution with n degrees of freedom. That is, if X2 >
χ2
1−α,df=n, the data provide strong evidence against the null hypothesis and we reject H0.

The function survdiff() is used for this hypothesis test. The first argument is a survival object
against a categorical covariate variable that is typically a variable designating which groups corre-
spond to which survival times. The object returned by survdiff() provides useful information.
(Surprisingly, the summary of this object is not particularly useful.)

> data(btrial); attach(btrial) # time variable warning omitted

> survdiff(Surv(time, death) ~ im) # output omitted

The second survdiff() argument, rho, designates the weights according to Ŝ(t)ρ and may be any
numeric value. The default is rho=0 and corresponds to the log-rank test. The Peto & Peto
modification of the Gehan-Wilcoxon test is computed using rho=1:

> survdiff(Surv(time, death) ~ im, rho=1) # some output omitted

...

Chisq= 4.4 on 1 degrees of freedom, p= 0.037

> detach(btrial)

To give greater weight to the first part of the survival curves, use rho larger than 0. To give weight
to the later part of the survival curves, use rho smaller than 0. The output of survdiff() is
generally self-explanatory. A χ2 statistic is computed along with a p-value.

9

Cox proportional hazards model, constant covariates
coxph(formula, method)

The Cox proportional hazards (Cox PH) model fits survival data with covariates z to a hazard
function of the form

h(t|z) = h0(t) exp
{
β′z
}

where β is an unknown vector and h0(t) is the baseline hazard, which is nonparametric. Primary
interest lies in estimating the parameter β using the partial likelihood:

L(β) =
D∏
i=1

exp
[
β′z(i)

]∑
j∈R(ti)

exp {β′zj}
where R(ti) is the “risk set” at time ti.

The MLE β̂ (a vector) is asymptotically N(β, I−1), where I represents the Fisher information.
This normal approximation makes doing local tests possible. A local test examines a subset of
the elements of β, testing the claim Cβ = d, where C is a q × p matrix of full rank and d is
a vector of length q. For example, we could set up a very simple test for β1 = 0 by choosing
C1×p = (1, 0, 0, ..., 0) and d1×1 = 0. For a general C and d, the test statistic is

X2
W =

(
Cβ̂ − d

)′ [
CÎ−1C ′

]−1 (
Cβ̂ − d

)
,

which under the null hypothesis follows χ2
q . This is known as the Wald test.

Beyond obtaining test p-values, there may be interest in the survival function for particular covari-
ates. If the estimate of the baseline survival function Ŝ0(t) is provided, then the estimate of the
survival function for an individual with covariates zk may be obtained via

Ŝ(t|zk) =
[
Ŝ0(t)

]exp(β̂′zk)

The function coxph() fits a Cox PH model to the supplied data. The first argument is a formula,
where the response is a survival object.

> data(burn); attach(burn)

> my.surv <- Surv(T1, D1)

> coxph.fit <- coxph(my.surv ~ Z1 + as.factor(Z11), method="breslow")

> coxph.fit

Call:

coxph(formula = my.surv ~ Z1 + as.factor(Z11), method = "breslow")

coef exp(coef) se(coef) z p

Z1 0.497 1.644 0.208 2.38 0.017

as.factor(Z11)2 -0.877 0.416 0.498 -1.76 0.078

as.factor(Z11)3 -1.650 0.192 0.802 -2.06 0.040

as.factor(Z11)4 -0.407 0.666 0.395 -1.03 0.300

Likelihood ratio test=14.6 on 4 df, p=0.00569 n= 154, number of events= 99

10

Two covariates have been used in this example. The second argument listed, method, specifies how
ties are handled. The default is "efron", and the other options are "breslow" and "exact". Much
useful information is obtained in the summary of coxph(), including

• estimates of the βk, including standard errors and p-values for each test H0 : βk = 0,

• an estimate of the risk ratio and its confidence interval, and

• p-values for likelihood ratio, Wald, and score tests for the global null, H0 : βi = 0 for all i.

More complex hypotheses may be checked using other items from the model fit:

> co <- coxph.fit$coefficients # may use coxph.fit$coeff instead

> va <- coxph.fit$var # I^(-1), estimated cov matrix of the estimates

> ll <- coxph.fit$loglik # log-likelihood for alt and null MLEs, resp.

To obtain the baseline survival function from a Cox PH model, apply survfit() to coxph():

> my.survfit.object <- survfit(coxph.fit)

The object returned by survfit() has the familiar characteristics and properties as before. For
instance, the baseline survival function may be plotted using the plot() function.

Here we will run one local test. Above, Z11 was a factor variable represented as the second,
third, and fourth coefficients of coxph.fit. We first construct C and d, then we compute the test
statistic X2

W . In the code below, the objects t1 and t2 were computed as intermediate steps for
obtaining the test statistic.

> C <- matrix(c(0, 1, 0, 0,

+ 0, 0, 1, 0,

+ 0, 0, 0, 1), nrow=3, byrow=TRUE)

> d <- rep(0, 3)

> t1 <- C %*% co - d

> t2 <- C %*% va %*% t(C)

> XW2 <- c(t(t1) %*% solve(t2) %*% t1)

> pchisq(XW2, 3, lower.tail=FALSE)

[1] 0.1025018

> detach(burn)

The concatenation function c() used in the computation of XW2 makes XW2 a vector rather than
a 1 × 1 matrix. The p-value of the test is 0.103, meaning Z11 is not statistically significant for a
significance level of α = 0.05.

For a more thorough discussion of Cox PH models in R, please see reference 7.

11

Cox proportional hazards model, time-dependent covariates

Using time-dependent covariates in R is an exercise in organization. Previously considered covari-
ates were unchanging attributes, such as treatment group or control group or a patient’s race. Now
we consider time-dependent covariates, such as interventions or environmental factors that might
result in a change mid-study.

To use time-dependent covariates in R, we apply left-truncation liberally. For example, if there
is an intervention for patient i, then we split patient i into two separate observations: pre and
post-intervention. More explicitly, suppose the patient intervention took place at time ti = 45 and
the event for patient i was observed at tevent = 58. We would split this patient’s record into two
pieces: 0 to 45 and 45 to 58. The covariate for intervention can be assigned different values for
each interval. Applying this time-splitting method in R requires care. Start and end times for each
interval are constructed, and right-censoring must be tracked for each pair of start/end times.

We consider the following example (simulated data). Patient records from an alcohol abuse clinic
were obtained for 150 days after the patients became sober. The event of interest was alcohol-
relapse, and four variables were available. The event variable describes the observed or censored
relapse time; the delta variable describes whether the event was observed (TRUE) or censored
(FALSE); gender is a time-independent covariate; and int is a time-dependent covariate indicating
whether the patient had an intervention, where some patients relapsed before their scheduled in-
terventions and so have NA listed. All interventions occurred after the patients became sober (day
0). That is, the intervention covariate changed for each patient over time, so long as they didn’t
relapse first. These data are saved as relapse in the OIsurv package.

> data(relapse)

> relapse

time event gender int

1 150 FALSE 0 84

2 53 TRUE 1 50

3 12 TRUE 1 NA

4 150 FALSE 0 89

5 150 FALSE 1 77

...

299 10 TRUE 0 NA

300 94 TRUE 1 4

These data can be modeled using two steps:

1. Construct survival records that may include left and right-censored observations. The survival
record of each patient with an intervention is broken into two survival records: one before
the intervention and one after. This step is largely book-keeping and programming in R.

2. The new survival records can be run through the coxph() function.

We first initialize new vectors to represent variables of the survival records. The variables t1 and
t2 represent start and end times, respectively, d represents whether relapse was observed (TRUE) or
right-censored (FALSE), g represents gender, and i represents whether the patient was undergoing
the intervention treatment (we must be mindful not to overwrite this variable in a loop).

12

> N <- dim(relapse)[1]

> t1 <- rep(0, N+sum(!is.na(relapse$int))) # initialize start time at 0

> t2 <- rep(-1, length(t1)) # build vector for end times

> d <- rep(-1, length(t1)) # whether event was censored

> g <- rep(-1, length(t1)) # gender covariate

> i <- rep(FALSE, length(t1)) # initialize intervention at FALSE

Next, each patient is checked for whether they had an intervention. If they did not, then their
record is simply copied to the new variables used. If there was an intervention, their observations
are split into two pieces: the period prior to intervention and the period after intervention. The
period after intervention is left-truncated for the time of intervention.

> j <- 1

> for(ii in 1:dim(relapse)[1]){

+ if(is.na(relapse$int[ii])){ # no intervention, copy survival record

+ t2[j] <- relapse$event[ii]

+ d[j] <- relapse$delta[ii]

+ g[j] <- relapse$gender[ii]

+ j <- j+1

+ } else { # intervention, split records

+ g[j+0:1] <- relapse$gender[ii] # gender is same for each time

+ d[j] <- 0 # no relapse observed pre-intervention

+ d[j+1] <- relapse$delta[ii] # relapse occur post-intervention?

+ i[j+1] <- TRUE # intervention covariate, post-intervention

+ t2[j] <- relapse$int[ii]-1 # end of pre-intervention

+ t1[j+1] <- relapse$int[ii]-1 # start of post-intervention

+ t2[j+1] <- relapse$event[ii] # end of post-intervention

+ j <- j+2 # two records added

+ }

+ }

The meanings of the variables are as follows: t1 represents the start of each interval; t2 the end of
each interval; e indicates if the event was observed; g is the gender covariate; and i is the indicator
variable for whether this interval is associated with a patient post-intervention.

While many patients had time-varying covariates (namely, the intervention), each of the new in-
tervals has covariates that do not change, which allows for the survival object and Cox PH model
to be constructed:

> mySurv <- Surv(t1, t2, d) # pg 3 discusses left-trunc. right-cens. data

> myCPH <- coxph(mySurv ~ g + i)

This example was a simple case; there was a single time-dependent covariate, and it changed at
most once per case. In some instances, there may be many time-varying covariates, even some that
change every time unit. In most of these instances, the same method may be used. Whenever a
covariate changes from one time unit to the next, split the interval into two and use left-truncation
and right-censoring as needed.

For additional reading on time-dependent covariates in R, see pages 7-11 of reference 7.

13

Accelerated failure-time models
survreg(formula, dist=’weibull’)

An accelerated failure-time (AFT) model is a parametric model with covariates and failure times
following the survival function of the form S(x|Z) = S0 (x ∗ exp [θ′Z]), where S0 is a function for
the baseline survival rate. The term exp [θ′Z] is called the acceleration factor. The AFT model
uses covariates to place individuals on different time scales – note the scaling by the covariates
in S(t|Z) via exp [θ′Z]. The AFT model can be rewritten in a log-linear form, where the log of
failure time (call this logX) is linearly related to the mean µ, the acceleration factor, and an error
term σW :

logX = µ− θ′Z + σW

W describes the error distribution. The following models for W are discussed in reference 5:

Distribution df Included in survival?

exponential 1 yes
Weibull 2 yes
lognormal 2 yes
log logistic 2 yes
generalized gamma 3 no

The survreg() function from the survival package is used for AFT modeling. The first argument is
formula, where a survival object is regressed on predictors. The argument dist has several options
to describe the parametric model used ("weibull", "exponential", "gaussian", "logistic",
"lognormal", or "loglogistic"). The code below follows Example 12.2 from reference 5 and uses
a Weibull model:

> data(larynx)

> attach(larynx)

> srFit <- survreg(Surv(time, delta) ~ as.factor(stage) + age, dist="weibull")

> summary(srFit)

...

Value Std. Error z p

(Intercept) 3.5288 0.9041 3.903 9.50e-05

as.factor(stage)2 -0.1477 0.4076 -0.362 7.17e-01

as.factor(stage)3 -0.5866 0.3199 -1.833 6.68e-02

as.factor(stage)4 -1.5441 0.3633 -4.251 2.13e-05

age -0.0175 0.0128 -1.367 1.72e-01

Log(scale) -0.1223 0.1225 -0.999 3.18e-01

Scale= 0.885

Weibull distribution

Loglik(model)= -141.4 Loglik(intercept only)= -151.1

Chisq= 19.37 on 4 degrees of freedom, p= 0.00066

Number of Newton-Raphson Iterations: 5

n= 90

14

In the output, (Intercept) and Log(scale) correspond to estimates of µ and log σ. The other
estimates correspond to covariate coefficients. We might also consider an exponential model:

> srFitExp <- survreg(Surv(time, delta) ~ as.factor(stage) + age, dist="exponential")

> summary(srFitExp)

...

Value Std. Error z p

(Intercept) 3.7550 0.9902 3.792 1.49e-04

as.factor(stage)2 -0.1456 0.4602 -0.316 7.52e-01

as.factor(stage)3 -0.6483 0.3552 -1.825 6.80e-02

as.factor(stage)4 -1.6350 0.3985 -4.103 4.08e-05

age -0.0197 0.0142 -1.388 1.65e-01

Scale fixed at 1

Exponential distribution

Loglik(model)= -141.9 Loglik(intercept only)= -151.1

Chisq= 18.44 on 4 degrees of freedom, p= 0.001

Number of Newton-Raphson Iterations: 4

n= 90

When σ = 1, the Weibull model is equivalent to the exponential model. We consider two strategies
for choosing the final model:

• a likelihood ratio test, which evaluates the null hypothesis σ = 1 against the two-sided
alternative, and

• examination of the significance of the Log(scale) coefficient (see the output to summary(srFit)).

In the example, both approaches result in the same conclusion: there is insufficient evidence to
reject the hypothesis that σ = 1 (H0). For this reason, we would likely go with the simpler
exponential model.

Interested users may explore the many stored components in a survreg() object:

> # the output is omitted from each command below

> srFitExp$coeff # covariate coefficients

> srFitExp$icoef # intercept and scale coefficients

> srFitExp$var # variance-covariance matrix

> srFitExp$loglik # log-likelihood

> srFit$scale # not using srFitExp (defaulted to 1)

Finally, we should not forget to detach the data set.

> detach(larynx)

15

Acknowledgements

Thank you to Beau Benjamin Bruce, who has kindly provided a function useful for Cox PH models
with time-dependent covariates to be hosted at OpenIntro (www.openintro.org/book/surv in r).
This new function greatly improves on a function used in the first version of this guide.

Thank you also to Christopher Barr for his helpful comments on the revisions for this guide.

References

1 Terry Therneau and original Splus− >R port by Thomas Lumley (2011). survival: Survival
analysis, including penalised likelihood. R package version 2.36-10.

http://CRAN.R-project.org/package=survival.

2 R Development Core Team (2010). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org.

3 David M Diez (2021). OIsurv: Supplement to survival analysis tutorial. R package version 0.3.
https://github.com/OpenIntroStat/OIsurv

4 Original by Klein, Moeschberger and modifications by Jun Yan (2012). KMsurv: Data sets from
Klein and Moeschberger (1997), Survival Analysis. R package version 0.1-4.

http://CRAN.R-project.org/package=KMsurv.

5 Klein, John P., and Melvin L. Moeschberger. Survival Analysis: Techniques for Censored and
Truncated Data. New York: Springer, 2003.

6 ReliaSoft Corporation website (2006). Data Classification.

http://www.weibull.com/LifeDataWeb/data_classification.htm.

7 Fox, John 2002. Cox Proportional-Hazards Regression for Survival Data. Appendix to An R and
S-PLUS Companion to Applied Regression.

Additional resources

8 Lumley, Thomas, 2007. The Survival Package (R help guide).

16

http://www.openintro.org/book/surv_in_r
http://CRAN.R-project.org/package=survival
http://www.R-project.org.
http://www.R-project.org.
https://github.com/OpenIntroStat/OIsurv
http://CRAN.R-project.org/package=KMsurv
http://www.weibull.com/LifeDataWeb/data_classification.htm

