
1

OpenIntro online supplement

This and other free online supplements to OpenIntro textbooks may be found at

openintro.org/books

Each of our textbooks is available for free in PDF and for $20 or less in print, offering an affordable
option at a time where introductory statistics textbook prices regularly reach over $200 from big
publishers.

This supplement is licensed under a Creative Commons license, and you are welcome to share it
with others. For additional details on the license for this document, see

www.openintro.org/rights.php

http://www.openintro.org/books
http://www.openintro.org/rights.php


1. SMALL SAMPLE HYPOTHESIS TESTING FOR A PROPORTION 2

1 Small sample hypothesis testing for a proportion

In this section we develop inferential methods for a single proportion that are appropriate when
the sample size is too small to apply the normal model to p̂. Just like the methods related to the
t-distribution, these methods can also be applied to large samples.

1.1 When the success-failure condition is not met

People providing an organ for donation sometimes seek the help of a special “medical consul-
tant”. These consultants assist the patient in all aspects of the surgery, with the goal of reducing
the possibility of complications during the medical procedure and recovery. Patients might choose
a consultant based in part on the historical complication rate of the consultant’s clients. One con-
sultant tried to attract patients by noting the average complication rate for liver donor surgeries in
the US is about 10%, but her clients have only had 3 complications in the 62 liver donor surgeries
she has facilitated. She claims this is strong evidence that her work meaningfully contributes to
reducing complications (and therefore she should be hired!).

GUIDED PRACTICE 0.1

We will let p represent the true complication rate for liver donors working with this consultant.
Estimate p using the data, and label this value p̂.1

EXAMPLE 0.2

Is it possible to assess the consultant’s claim with the data provided?

No. The claim is that there is a causal connection, but the data are observational. Patients who
hire this medical consultant may have lower complication rates for other reasons.

While it is not possible to assess this causal claim, it is still possible to test for an association using
these data. For this question we ask, could the low complication rate of p̂ = 0.048 be due to chance?

GUIDED PRACTICE 0.3

Write out hypotheses in both plain and statistical language to test for the association between the
consultant’s work and the true complication rate, p, for this consultant’s clients.2

EXAMPLE 0.4

In the examples based on large sample theory, we modeled p̂ using the normal distribution. Why is
this not appropriate here?

The independence assumption may be reasonable if each of the surgeries is from a different surgical
team. However, the success-failure condition is not satisfied. Under the null hypothesis, we would
anticipate seeing 62× 0.10 = 6.2 complications, not the 10 required for the normal approximation.

The uncertainty associated with the sample proportion should not be modeled using the normal
distribution. However, we would still like to assess the hypotheses from Guided Practice 3 in absence
of the normal framework. To do so, we need to evaluate the possibility of a sample value (p̂) this
far below the null value, p0 = 0.10. This possibility is usually measured with a p-value.

1The sample proportion: p̂ = 3/62 = 0.048
2H0: There is no association between the consultant’s contributions and the clients’ complication rate. In statis-

tical language, p = 0.10. HA: Patients who work with the consultant tend to have a complication rate lower than
10%, i.e. p < 0.10.
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The p-value is computed based on the null distribution, which is the distribution of the test
statistic if the null hypothesis is true. Supposing the null hypothesis is true, we can compute the
p-value by identifying the chance of observing a test statistic that favors the alternative hypothesis
at least as strongly as the observed test statistic. This can be done using simulation.

1.2 Generating the null distribution and p-value by simulation

We want to identify the sampling distribution of the test statistic (p̂) if the null hypothesis
was true. In other words, we want to see how the sample proportion changes due to chance alone.
Then we plan to use this information to decide whether there is enough evidence to reject the null
hypothesis.

Under the null hypothesis, 10% of liver donors have complications during or after surgery.
Suppose this rate was really no different for the consultant’s clients. If this was the case, we could
simulate 62 clients to get a sample proportion for the complication rate from the null distribution.

Each client can be simulated using a deck of cards. Take one red card, nine black cards, and mix
them up. Then drawing a card is one way of simulating the chance a patient has a complication if
the true complication rate is 10% for the data. If we do this 62 times and compute the proportion of
patients with complications in the simulation, p̂sim, then this sample proportion is exactly a sample
from the null distribution.

An undergraduate student was paid $2 to complete this simulation. There were 5 simulated
cases with a complication and 57 simulated cases without a complication, i.e. p̂sim = 5/62 = 0.081.

EXAMPLE 0.5

Is this one simulation enough to determine whether or not we should reject the null hypothesis from
Guided Practice 3? Explain.

No. To assess the hypotheses, we need to see a distribution of many p̂sim, not just a single draw
from this sampling distribution.

One simulation isn’t enough to get a sense of the null distribution; many simulation studies are
needed. Roughly 10,000 seems sufficient. However, paying someone to simulate 10,000 studies by
hand is a waste of time and money. Instead, simulations are typically programmed into a computer,
which is much more efficient.

Figure 1 shows the results of 10,000 simulated studies. The proportions that are equal to or
less than p̂ = 0.048 are shaded. The shaded areas represent sample proportions under the null
distribution that provide at least as much evidence as p̂ favoring the alternative hypothesis. There
were 1222 simulated sample proportions with p̂sim ≤ 0.048. We use these to construct the null
distribution’s left-tail area and find the p-value:

left tail =
Number of observed simulations with p̂sim ≤ 0.048

10000
(6)

Of the 10,000 simulated p̂sim, 1222 were equal to or smaller than p̂. Since the hypothesis test is
one-sided, the estimated p-value is equal to this tail area: 0.1222.

GUIDED PRACTICE 0.7

Because the estimated p-value is 0.1222, which is larger than the significance level 0.05, we do not
reject the null hypothesis. Explain what this means in plain language in the context of the problem.3

GUIDED PRACTICE 0.8

Does the conclusion in Guided Practice 7 imply there is no real association between the surgical
consultant’s work and the risk of complications? Explain.4

3There isn’t sufficiently strong evidence to support an association between the consultant’s work and fewer surgery
complications.
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Figure 1: The null distribution for p̂, created from 10,000 simulated studies. The
left tail, representing the p-value for the hypothesis test, contains 12.22% of the
simulations.

ONE-SIDED HYPOTHESIS TEST FOR ppp WITH A SMALL SAMPLE

The p-value is always derived by analyzing the null distribution of the test statistic. The normal
model poorly approximates the null distribution for p̂ when the success-failure condition is
not satisfied. As a substitute, we can generate the null distribution using simulated sample
proportions (p̂sim) and use this distribution to compute the tail area, i.e. the p-value.

We continue to use the same rule as before when computing the p-value for a two-sided test:
double the single tail area, which remains a reasonable approach even when the sampling distribution
is asymmetric. However, this can result in p-values larger than 1 when the point estimate is very
near the mean in the null distribution; in such cases, we write that the p-value is 1. Also, very large
p-values computed in this way (e.g. 0.85), may also be slightly inflated.

Guided Practice 7 said the p-value is estimated. It is not exact because the simulated null
distribution itself is not exact, only a close approximation. However, we can generate an exact null
distribution and p-value using the binomial model.

1.3 Generating the exact null distribution and p-value

The number of successes in n independent cases can be described using the binomial model.
Recall that the probability of observing exactly k successes is given by

P (k successes) =

(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k (9)

where p is the true probability of success. The expression
(
n
k

)
is read as n choose k, and the

exclamation points represent factorials. For instance, 3! is equal to 3 × 2 × 1 = 6, 4! is equal to
4× 3× 2× 1 = 24, and so on.

The tail area of the null distribution is computed by adding up the probability in Equation (9)
for each k that provides at least as strong of evidence favoring the alternative hypothesis as the
data. If the hypothesis test is one-sided, then the p-value is represented by a single tail area. If the
test is two-sided, compute the single tail area and double it to get the p-value, just as we have done
in the past.

4No. It might be that the consultant’s work is associated with a reduction but that there isn’t enough data to
convincingly show this connection.
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EXAMPLE 0.10

Compute the exact p-value to check the consultant’s claim that her clients’ complication rate is
below 10%.

Exactly k = 3 complications were observed in the n = 62 cases cited by the consultant. Since we
are testing against the 10% national average, our null hypothesis is p = 0.10. We can compute the
p-value by adding up the cases where there are 3 or fewer complications:

p-value =

3∑
j=0

(
n

j

)
pj(1− p)n−j

=

3∑
j=0

(
62

j

)
0.1j(1− 0.1)62−j

=

(
62

0

)
0.10(1− 0.1)62−0 +

(
62

1

)
0.11(1− 0.1)62−1

+

(
62

2

)
0.12(1− 0.1)62−2 +

(
62

3

)
0.13(1− 0.1)62−3

= 0.0015 + 0.0100 + 0.0340 + 0.0755

= 0.1210

This exact p-value is very close to the p-value based on the simulations (0.1222), and we come to
the same conclusion. We do not reject the null hypothesis, and there is not statistically significant
evidence to support the association.

If it were plotted, the exact null distribution would look almost identical to the simulated null
distribution shown in Figure 1 on page 4.

1.4 Using simulation for goodness of fit tests

Simulation methods may also be used to test goodness of fit. In short, we simulate a new sample
based on the purported bin probabilities, then compute a chi-square test statistic X2

sim. We do this
many times (e.g. 10,000 times), and then examine the distribution of these simulated chi-square
test statistics. This distribution will be a very precise null distribution for the test statistic X2 if
the probabilities are accurate, and we can find the upper tail of this null distribution, using a cutoff
of the observed test statistic, to calculate the p-value.

EXAMPLE 0.11

Let’s consider an example evaluating whether jurors are racially representative of the population.
Would our findings differ if we used a simulation technique? This example was considered with large
sample methods in OpenIntro Statistics textbook, and we’ll compare results to using small sample
methods.

Since the minimum bin count condition was satisfied, the chi-square distribution is an excellent
approximation of the null distribution, meaning the results should be very similar. Figure 2 shows
the simulated null distribution using 100,000 simulated X2

sim values with an overlaid curve of the
chi-square distribution. The distributions are almost identical, and the p-values are essentially indis-
tinguishable: 0.115 for the simulated null distribution and 0.117 for the theoretical null distribution.
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Figure 2: The precise null distribution for the juror example is shown as a histogram
of simulated X2

sim statistics, and the theoretical chi-square distribution is also
shown.
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2 Randomization test

Cardiopulmonary resuscitation (CPR) is a procedure commonly used on individuals suffering
a heart attack when other emergency resources are not available. This procedure is helpful in
maintaining some blood circulation, but the chest compressions involved can also cause internal
injuries. Internal bleeding and other injuries complicate additional treatment efforts following arrival
at a hospital. For example, blood thinners may be used to release a clot responsible for a heart attack.
However, the blood thinner would negatively affect internal bleeding.

We consider an experiment for patients who underwent CPR for a heart attack and were
subsequently admitted to a hospital.5 These patients were randomly divided into a treatment group
where they received a blood thinner or the control group where they did not receive a blood thinner.
The outcome variable of interest was whether the patients survived for at least 24 hours.

EXAMPLE 0.12

What is an appropriate set of hypotheses for this study? Let pc represent the true survival rate of
people who do not receive a blood thinner (corresponding to the control group) and pt represent the
survival rate for people receiving a blood thinner (corresponding to the treatment group).

We are interested in whether the blood thinners are helpful or harmful, so a two-sided test is
appropriate.

H0: Blood thinners do not have an overall survival effect, i.e. the survival proportions are the same
in each group. pt − pc = 0.

HA: Blood thinners do have an impact on survival. pt − pc 6= 0.

2.1 Large sample framework for a difference in two proportions

There were 50 patients in the experiment who did not receive the blood thinner and 40 patients
who did. The study results are shown in Figure 3.

Survived Died Total
Control 11 39 50
Treatment 14 26 40
Total 25 65 90

Figure 3: Results for the CPR study. Patients in the treatment group were given
a blood thinner, and patients in the control group were not.

GUIDED PRACTICE 0.13

What is the observed survival rate in the control group? And in the treatment group? Also, provide
a point estimate of the difference in survival proportions of the two groups: p̂t − p̂c.6

According to the point estimate, for patients who have undergone CPR outside of the hospital,
an additional 13% survive when they are treated with blood thinners. However, this difference might
be explainable by chance. We’d like to investigate this using a large sample framework, but we first
need to check the conditions for such an approach.

5Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation: a prospec-
tive clinical trial, by Böttiger et al., The Lancet, 2001.

6Observed control survival rate: pc = 11
50

= 0.22. Treatment survival rate: pt = 14
40

= 0.35. Observed difference:
p̂t − p̂c = 0.35 − 0.22 = 0.13.
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EXAMPLE 0.14

Can the point estimate of the difference in survival proportions be adequately modeled using a
normal distribution?

We will assume the patients are independent, which is probably reasonable. The success-failure
condition is also satisfied. Since the proportions are equal under the null, we can compute the
pooled proportion, p̂pooled = (11 + 14)/(50 + 40) = 0.278, for checking conditions. We find the
expected number of successes (13.9, 11.1) and failures (36.1, 28.9) are above 10. The normal model
is reasonable.

While we can apply a normal framework as an approximation to find a p-value, we might keep
in mind that the expected number of successes is only 13.9 in one group and 11.1 in the other. Below
we conduct an analysis relying on the large sample normal theory. We will follow up with a small
sample analysis and compare the results.

EXAMPLE 0.15

Assess the hypotheses presented in Example 12 using a large sample framework. Use a significance
level of α = 0.05.

We suppose the null distribution of the sample difference follows a normal distribution with mean
0 (the null value) and a standard deviation equal to the standard error of the estimate. The null
hypothesis in this case would be that the two proportions are the same, so we compute the standard
error using the pooled proportion:

SE =

√
p(1− p)
nt

+
p(1− p)
nc

≈
√

0.278(1− 0.278)

40
+

0.278(1− 0.278)

50
= 0.095

where we have used the pooled estimate
(
p̂pooled = 11+14

50+40 = 0.278
)

in place of the true proportion,
p.

The null distribution with mean zero and standard deviation 0.095 is shown in Figure 4. We compute
the tail areas to identify the p-value. To do so, we use the Z-score of the point estimate:

Z =
(p̂t − p̂c)− null value

SE
=

0.13− 0

0.095
= 1.37

We can use software or a normal probability table to find the right tail area: 0.0853. The p-value is
twice the single tail area: 0.1706. This p-value does not provide convincing evidence that the blood
thinner helps. Thus, there is insufficient evidence to conclude whether or not the blood thinner helps
or hurts. (Remember, we never “accept” the null hypothesis – we can only reject or fail to reject.)

−0.29 −0.19 −0.1 0 0.1 0.19 0.29

right tail

p̂t − p̂c

Figure 4: The null distribution of the point estimate p̂t− p̂c under the large sample
framework is a normal distribution with mean 0 and standard deviation equal to
the standard error, in this case SE = 0.095. The p-value is represented by the
shaded areas.



2. RANDOMIZATION TEST 9

The p-value 0.176 relies on the normal approximation. We know that when the samples sizes
are large, this approximation is quite good. However, when the sample sizes are relatively small as
in this example, the approximation may only be adequate. Next we develop a simulation technique,
apply it to these data, and compare our results. In general, the small sample method we develop
may be used for any size sample, small or large, and should be considered as more accurate than
the corresponding large sample technique.

2.2 Simulating a difference under the null distribution

The ideas in this section were first introduced in a section of OpenIntro Statistics considering a
malaria treatment. For the interested reader, this earlier section provides a more in-depth discussion.

Suppose the null hypothesis is true. Then the blood thinner has no impact on survival and
the 13% difference was due to chance. In this case, we can simulate null differences that are due
to chance using a randomization technique.7 By randomly assigning “fake treatment” and “fake
control” stickers to the patients’ files, we could get a new grouping – one that is completely due to
chance. The expected difference between the two proportions under this simulation is zero.

We run this simulation by taking 40 treatment fake and 50 control fake labels and randomly
assigning them to the patients. The label counts of 40 and 50 correspond to the number of treatment
and control assignments in the actual study. We use a computer program to randomly assign these
labels to the patients, and we organize the simulation results into Figure 5.

Survived Died Total
control fake 15 35 50
treatment fake 10 30 40
Total 25 65 90

Figure 5: Simulated results for the CPR study under the null hypothesis. The
labels were randomly assigned and are independent of the outcome of the patient.

GUIDED PRACTICE 0.16

What is the difference in survival rates between the two fake groups in Figure 5? How does this
compare to the observed 13% in the real groups?8

The difference computed in Guided Practice 16 represents a draw from the null distribution
of the sample differences. Next we generate many more simulated experiments to build up the null
distribution, much like we did in Section 1.2 to build a null distribution for a one sample proportion.

Caution: Simulation in the two proportion case requires that the null difference
is zero

The technique described here to simulate a difference from the null distribution relies on an
important condition in the null hypothesis: there is no connection between the two variables
considered. In some special cases, the null difference might not be zero, and more advanced
methods (or a large sample approximation, if appropriate) would be necessary.

2.3 Null distribution for the difference in two proportions

We build up an approximation to the null distribution by repeatedly creating tables like the
one shown in Figure 5 and computing the sample differences. The null distribution from 10,000
simulations is shown in Figure 6.

7The test procedure we employ in this section is formally called a permutation test.
8The difference is p̂t,fake − p̂c,fake = 10

40
− 15

50
= −0.05, which is closer to the null value p0 = 0 than what we

observed.
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Figure 6: An approximation of the null distribution of the point estimate, p̂t − p̂c.
The p-value is twice the right tail area.

EXAMPLE 0.17

Compare Figures 4 and 6. How are they similar? How are they different?

The shapes are similar, but the simulated results show that the continuous approximation of the
normal distribution is not very good. We might wonder, how close are the p-values?

GUIDED PRACTICE 0.18

The right tail area is about 0.13. (It is only a coincidence that we also have p̂t − p̂c = 0.13.) The
p-value is computed by doubling the right tail area: 0.26. How does this value compare with the
large sample approximation for the p-value?9

In general, small sample methods produce more accurate results since they rely on fewer as-
sumptions. However, they often require some extra work or simulations. For this reason, many
statisticians use small sample methods only when conditions for large sample methods are not sat-
isfied.

2.4 Randomization for two-way tables and chi-square

Randomization methods may also be used for the contingency tables. In short, we create a
randomized contingency table, then compute a chi-square test statistic X2

sim. We repeat this many
times using a computer, and then we examine the distribution of these simulated test statistics. This
randomization approach is valid for any sized sample, and it will be more accurate for cases where
one or more expected bin counts do not meet the minimum threshold of 5. When the minimum
threshold is met, the simulated null distribution will very closely resemble the chi-square distribution.
As before, we use the upper tail of the null distribution to calculate the p-value.

9The approximation in this case is fairly poor (p-values: 0.174 vs. 0.26), though we come to the same conclusion.
The data do not provide convincing evidence showing the blood thinner helps or hurts patients.
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